ArticleOriginal scientific text
Title
Banach spaces in which all multilinear forms are weakly sequentially continuous
Authors 1, 1, 2
Affiliations
- Departamento de Matemáticas, Universidad de Extremadura, Avda. de Elvas s/n 06071 Badajoz, Spain
- Facultad de Informática, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Sain
Abstract
We solve several problems in the theory of polynomials in Banach spaces. (i) There exist Banach spaces without the Dunford-Pettis property and without upper p-estimates in which all multilinear forms are weakly sequentially continuous: some Lorentz sequence spaces, their natural preduals and, most notably, the dual of Schreier's space. (ii) There exist Banach spaces X without the Dunford-Pettis property such that all multilinear forms on X and X* are weakly sequentially continuous; this gives an answer to a question of Dimant and Zalduendo [20]. (iii) The sum of two polynomially null sequences need not be polynomially null; this answers a question of Biström, Jaramillo and Lindström [8] and also of González and Gutiérrez [23]. (iv), (v) The absolutely convex closed hull of a pw-compact set need not be pw-compact; the projective tensor product of two polynomially null sequences need not be a polynomially null sequence. This answers two questions of González and Gutiérrez [23]. (vi) There exists a Banach space without property (P); this answers a question of Aron, Choi and Llavona [5].
Keywords
multilinear forms, polynomials, weak continuity
Bibliography
- R. Alencar, R. Aron and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411.
- R. Alencar, R. Aron and G. Fricke, Tensor products of Tsirelson's space, Illinois J. Math. 31 (1987), 17-23.
- R. Alencar and K. Floret, Weak-strong continuity of multilinear mappings and the Pełczyński-Pitt theorem, J. Math Anal. Appl. 206 (1997), 532-546.
- Z. Altshuler, P. G. Casazza and B. L. Lin, On symmetric basic sequences in Lorentz sequence spaces, Israel J. Math. 15 (1993), 140-155.
- R. M. Aron, Y. S. Choi and J. G. Llavona, Estimates by polynomials, Bull. Austral. Math. Soc. 52 (1995), 475-486.
- R. M. Aron and S. Dineen, Q-reflexive Banach spaces, Rocky Mountain J. Math. 27 (1997), 1009-1025.
- B. Beauzamy et J. T. Lapresté, Modèles étalés des espaces de Banach, Hermann, Paris, 1984.
- P. Biström, J. A. Jaramillo and M. Lindström, Polynomial compactness in Banach spaces, Rocky Mountain J. Math., to appear.
- T. Carne, B. Cole and T. Gamelin, A uniform algebra of analytic functions on a Banach space, Trans. Amer. Math. Soc. 314 (1989), 639-659.
- P. G. Casazza and B. L. Lin, On symmetric basis sequences in Lorentz sequence spaces II, Israel J. Math. 17 (1974), 191-218.
- J. M. F. Castillo, On Banach spaces X such that
, Extracta Math. 10 (1995), 27-36. - J. M. F. Castillo, R. García and R. Gonzalo, Stability properties of the class of Banach spaces in which all multilinear forms are weakly sequentially continuous, preprint, 1999.
- J. M. F. Castillo and M. González, The Dunford-Pettis property is not a three-space property, Israel J. Math. 81 (1993), 297-299.
- J. M. F. Castillo and M. González, New results on the Dunford-Pettis property, Bull. London Math. Soc. 27 (1995), 599-605.
- J. M. F. Castillo, M. González and F. Sánchez, M-ideals of Schreier type and the Dunford-Pettis property, in: Non-Associative Algebra and its Applications, S. González (ed.), Kluwer, 1994, 81-85.
- J. M. F. Castillo and F. Sánchez, Remarks on some basic properties of Tsirelson's space, Note Mat. 13 (1993), 117-122.
- J. M. F. Castillo and F. Sánchez, Weakly p-compact, p-Banach-Saks, and super-reflexive Banach spaces, J. Math. Anal. Appl. 185 (1994), 256-261.
- Y. S. Choi and S. G. Kim, Polynomial properties of Banach spaces, J. Math. Anal. Appl. 190 (1995), 203-210.
- J. C. Díaz, Non-containment of
in projective tensor products of Banach spaces, Rev. Mat. Univ. Complut. Madrid 3 (1990), 121-124. - V. Dimant and I. Zalduendo, Bases in spaces of multilinear forms over Banach spaces, J. Math. Anal. Appl. 200 (1996), 548-566.
- G. Emmanuele, A dual characterization of spaces not containing
, Bull. Polish Acad. Sci. 34 (1986), 155-160. - J. D. Farmer, Polynomial reflexivity in Banach spaces, Israel J. Math. 87 (1994), 257-273.
- M. González and J. M. Gutiérrez, Gantmacher type theorems for holomorphic mappings, Math. Nachr. 186 (1997), 131-145.
- M. González and J. M. Gutiérrez, Polynomials on Schreier's space, preprint, 1997.
- R. Gonzalo, Multilinear forms, subsymmetric polynomials and spreading models, J. Math. Anal. Appl. 202 (1996), 379-397.
- R. Gonzalo and J. A. Jaramillo, Smoothness and estimates of sequences in Banach spaces, Israel J. Math. 89 (1995), 321-341.
- R. Gonzalo and J. A. Jaramillo, Compact polynomials between Banach spaces, Proc. Roy. Irish Acad. Sect. A 95 (1995), 213-226.
- J. M. Gutiérrez, J. A. Jaramillo and J. G. Llavona, Polynomials and geometry of Banach spaces, Extracta Math. 10 (1995), 79-114.
- J. A. Jaramillo and A. Prieto, Weak-polynomial convergence on a Banach space, Proc. Amer. Math. Soc. 118 (1993), 463-468.
- M. Jiménez Sevilla and R. Payá, Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, Studia Math. 137 (1998), 99-112.
- H. Knaust and E. Odell, Weakly null sequences with upper
-estimates, in: Lecture Notes in Math. 1470, Springer, 1990, 85-107. - D. Leung, On
-saturated Banach spaces, Illinois J. Math. 39 (1995), 15-29. - J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin, 1977.
- J. Mujica, Complex Analysis in Banach Spaces, North-Holland Math. Stud. 120, North-Holland, Amsterdam, 1996.
- A. Pełczyński, A property of multilinear operations, Studia Math. 16 (1957), 173-182.
- R. A. Ryan, Dunford-Pettis properties, Bull. Acad. Polon. Sci. 27 (1979), 373-379.
- C. Stegall, Duals of certain spaces with the Dunford-Pettis property, Notices Amer. Math. Soc. 19 (1972), A-799.
- E. Straeuli, On Hahn-Banach extensions for certain operator ideals, Arch. Math. (Basel) 47 (1986), 49-54.
- M. Valdivia, Complemented subspaces and interpolation properties in spaces of polynomials, J. Math. Anal. Appl. 208 (1997), 1-30.