ArticleOriginal scientific text
Title
Sur la division et la composition dans des classes ultradifférentiables
Authors 1, 2
Affiliations
- U.R.A. C.N.R.S. 757, Université Paris-Sud, Mathématiques - Bât. 425, 91405 Orsay Cedex, France
- U.R.A. C.N.R.S. 751, Université de Lille, U.F.R. de Mathématique - Bât. M2, 59655 Villeneuve d'Ascq Cedex, France
Abstract
We generalize to some classes of ultradifferentiable jets or functions the classical Łojasiewicz Division Theorem and Glaeser Composition Theorem. The proof uses the desingularization results by Hironaka, Bierstone and Milman.
Bibliography
- M. F. Atiyah, Resolution of singularities and division of distributions, Comm. Pure Appl. Math. 23 (1970), 145-150.
- I. N. Bernstein and S. I. Gel'fand, Meromorphic property of the function
, Funct. Anal. Appl. 3 (1969), 68-69. - E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets, Publ. I.H.E.S. 67 (1988), 5-42.
- E. Bierstone and P. D. Milman, A simple constructive proof of canonical resolution of singularities, in: Effective Methods in Algebraic Geometry, Progr. Math. 94, Birkhäuser, 1991, 11-30.
- L. P. Bos and P. D. Milman, Sobolev-Gagliardo-Nirenberg and Markov type inequalities on subanalytic domains, Geom. Funct. Anal. 5 (1995), 853-923.
- J. Chaumat et A.-M. Chollet, Propriétés de l'intersection des classes de Gevrey et de certaines autres classes, Bull. Sci. Math. (1998), à paraître.
- G. Glaeser, Fonctions composées différentiables, Ann. of Math. 77 (1963), 193-209.
- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, ibid. 79 (1964), 109-326.
- S. Łojasiewicz, Sur le problème de la division, Studia Math. 8 (1959), 87-136.
- B. Malgrange, Ideals of Differentiable Functions, Oxford Univ. Press, 1966.
- V. Thilliez, Sur les fonctions composées différentiables, J. Math. Pures Appl. 76 (1997), 499-524.
- J. C. Tougeron, Idéaux de fonctions différentiables, Springer, 1972.