ArticleOriginal scientific text

Title

Interpolation of real method spaces via some ideals of operators

Authors 1, 2

Affiliations

  1. Faculty of Mathematics and Computer Science, A. Mickiewicz University, Matejki 48/49 60-769 Poznań, Poland
  2. Department of Mathematics, Florida Atlantic University, Boca Raton, FL 33431, U.S.A.

Abstract

Certain operator ideals are used to study interpolation of operators between spaces generated by the real method. Using orbital equivalence a new reiteration formula is proved for certain real interpolation spaces generated by ordered pairs of Banach lattices of the form (X,L(w)). As an application we extend Ovchinnikov's interpolation theorem from the context of classical Lions-Peetre spaces to a larger class of real interpolation spaces. A description of certain abstract J-method spaces is also presented.

Bibliography

  1. G. Bennett, Inclusion mappings between lp spaces, J. Funct. Anal. 13 (1973), 20-27.
  2. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.
  3. Yu. A. Brudnyĭ and N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces I, North-Holland, Amsterdam, 1991.
  4. A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190.
  5. M. Cwikel and J. Peetre, Abstract K and J spaces, J. Math. Pures Appl. 60 (1981), 1-50.
  6. M. Cwikel and Y. Sagher, Relation between real and complex interpolation spaces, Indiana Univ. Math. J. 36 (1987), 905-912.
  7. V. I. Dmitriev, Duality of the interpolation methods of constants and means, Dokl. Akad. Nauk SSSR 214 (1974), 22-24 (in Russian).
  8. S. Janson, Maximal and minimal methods of interpolation, J. Funct. Anal. 44 (1981), 50-73.
  9. S. G. Kreĭn, Yu. I. Petunin and E. M. Semenov, Interpolation of Linear Operators, Nauka, Moscow, 1978 (in Russian); English transl.: Amer. Math. Soc., Providence, 1982.
  10. G. Ya. Lozanovskiĭ, On some Banach lattices IV, Sibirsk. Mat. Zh. 14 (1973), 140-155 (in Russian); English transl.: Siberian Math. J. 14 (1973), 97-108.
  11. L. Maligranda and M. Mastyło, Inclusion mappings between Orlicz sequence spaces, Report No. 090/1998, 12 pp., Faculty of Math. & Comp. Sci., Poznań.
  12. V. I. Ovchinnikov, The methods of orbits in interpolation theory, Math. Rep. 1 (1984), 349-516.
  13. V. I. Ovchinnikov, Interpolation theorems for Lp,q-spaces, Mat. Sb. 136 (1988), 227-240 (in Russian).
  14. A. Pietsch, Operator Ideals, North-Holland, Berlin, 1978.
  15. Y. Sagher, Interpolation of r-Banach spaces, Studia Math. 41 (1972), 45-70.
  16. G. Sparr, Interpolation of weighted Lp-spaces, ibid. 62 (1978), 229-271.
Pages:
17-35
Main language of publication
English
Received
1998-06-20
Published
1999
Exact and natural sciences