ArticleOriginal scientific text
Title
Eigenvalue problems with indefinite weight
Authors 1, 2
Affiliations
- Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden
- Institut de Mathématique Pure et Appliquée, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
Abstract
We consider the linear eigenvalue problem -Δu = λV(x)u, , and its nonlinear generalization , . The set Ω need not be bounded, in particular, is admitted. The weight function V may change sign and may have singular points. We show that there exists a sequence of eigenvalues .
Keywords
eigenvalue problem, Laplacian, p-Laplacian, indefinite weight
Bibliography
- W. Allegretto, Principal eigenvalues for indefinite-weight elliptic problems in
, Proc. Amer. Math. Soc. 116 (1992), 701-706. - W. Allegretto and Y. X. Huang, Eigenvalues of the indefinite-weight p-Laplacian in weighted spaces, Funkc. Ekvac. 38 (1995), 233-242.
- K. J. Brown, C. Cosner and J. Fleckinger, Principal eigenvalues for problems with indefinite weight function on
, Proc. Amer. Math. Soc. 109 (1990), 147-155. - K. J. Brown and A. Tertikas, The existence of principal eigenvalues for problems with indefinite weight function on
, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 561-569. - J.-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal. 1 (1993), 151-171.
- P. Drábek and Y. X. Huang, Bifurcation problems for the p-Laplacian in
, Trans. Amer. Math. Soc. 349 (1997), 171-188. - P. Drábek, Z. Moudan and A. Touzani, Nonlinear homogeneous eigenvalue problem in
: nonstandard variational approach, Comm. Math. Univ. Carolin. 38 (1997), 421-431. - J. Fleckinger, R. F. Manásevich, N. M. Stavrakakis and F. de Thélin, Principal eigenvalues for some quasilinear elliptic equations on
, Adv. Differential Equations 2 (1997), 981-1003. - J. P. Garcia Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998), 441-476.
- Y. X. Huang, Eigenvalues of the p-Laplacian in
with indefinite weight, Comm. Math. Univ. Carolin. 36 (1995), 519-527. - D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. 121 (1985), 463-494.
- E. H. Lieb and M. Loss, Analysis, Amer. Math. Soc., Providence, R.I., 1997.
- V. G. Maz'ja, Sobolev Spaces, Springer, Berlin, 1985.
- P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, R.I., 1986.
- G. Rozenblum and M. Solomyak, On principal eigenvalues for indefinite problems in Euclidean space, Math. Nachr. 192 (1998), 205-223.
- M. Struwe, Variational Methods, Springer, Berlin, 1990.
- A. Szulkin, Ljusternik-Schnirelmann theory on
-manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 119-139. - A. Tertikas, Critical phenomena in linear elliptic problems, J. Funct. Anal. 154 (1998), 42-66.
- M. Willem, Analyse Harmonique Réelle, Hermann, Paris, 1995.
- M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.