ArticleOriginal scientific text

Title

Eigenvalue problems with indefinite weight

Authors 1, 2

Affiliations

  1. Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden
  2. Institut de Mathématique Pure et Appliquée, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium

Abstract

We consider the linear eigenvalue problem -Δu = λV(x)u, uD1,2_0(Ω), and its nonlinear generalization -Δpu=λV(x)|u|p-2u, uD1,p_0(Ω). The set Ω need not be bounded, in particular, Ω=N is admitted. The weight function V may change sign and may have singular points. We show that there exists a sequence of eigenvalues λn.

Keywords

eigenvalue problem, Laplacian, p-Laplacian, indefinite weight

Bibliography

  1. W. Allegretto, Principal eigenvalues for indefinite-weight elliptic problems in Rn, Proc. Amer. Math. Soc. 116 (1992), 701-706.
  2. W. Allegretto and Y. X. Huang, Eigenvalues of the indefinite-weight p-Laplacian in weighted spaces, Funkc. Ekvac. 38 (1995), 233-242.
  3. K. J. Brown, C. Cosner and J. Fleckinger, Principal eigenvalues for problems with indefinite weight function on RN, Proc. Amer. Math. Soc. 109 (1990), 147-155.
  4. K. J. Brown and A. Tertikas, The existence of principal eigenvalues for problems with indefinite weight function on k, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 561-569.
  5. J.-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal. 1 (1993), 151-171.
  6. P. Drábek and Y. X. Huang, Bifurcation problems for the p-Laplacian in RN, Trans. Amer. Math. Soc. 349 (1997), 171-188.
  7. P. Drábek, Z. Moudan and A. Touzani, Nonlinear homogeneous eigenvalue problem in RN: nonstandard variational approach, Comm. Math. Univ. Carolin. 38 (1997), 421-431.
  8. J. Fleckinger, R. F. Manásevich, N. M. Stavrakakis and F. de Thélin, Principal eigenvalues for some quasilinear elliptic equations on N, Adv. Differential Equations 2 (1997), 981-1003.
  9. J. P. Garcia Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998), 441-476.
  10. Y. X. Huang, Eigenvalues of the p-Laplacian in RN with indefinite weight, Comm. Math. Univ. Carolin. 36 (1995), 519-527.
  11. D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. 121 (1985), 463-494.
  12. E. H. Lieb and M. Loss, Analysis, Amer. Math. Soc., Providence, R.I., 1997.
  13. V. G. Maz'ja, Sobolev Spaces, Springer, Berlin, 1985.
  14. P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, R.I., 1986.
  15. G. Rozenblum and M. Solomyak, On principal eigenvalues for indefinite problems in Euclidean space, Math. Nachr. 192 (1998), 205-223.
  16. M. Struwe, Variational Methods, Springer, Berlin, 1990.
  17. A. Szulkin, Ljusternik-Schnirelmann theory on C1-manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 119-139.
  18. A. Tertikas, Critical phenomena in linear elliptic problems, J. Funct. Anal. 154 (1998), 42-66.
  19. M. Willem, Analyse Harmonique Réelle, Hermann, Paris, 1995.
  20. M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
Pages:
191-201
Main language of publication
English
Received
1999-06-04
Accepted
1998-11-26
Published
1999
Exact and natural sciences