ArticleOriginal scientific text

Title

Some geometric properties of typical compact convex sets in Hilbert spaces

Authors 1

Affiliations

  1. Centro Vito Volterra, Dipartimento di Matematica, Università di Roma II (Tor Vergata), Via della Ricerca Scientifica, 00133 Roma, Italy

Abstract

An investigation is carried out of the compact convex sets X in an infinite-dimensional separable Hilbert space , for which the metric antiprojection qX(e) from e to X has fixed cardinality n+1 (n arbitrary) for every e in a dense subset of . A similar study is performed in the case of the metric projection pX(e) from e to X where X is a compact subset of .

Bibliography

  1. E. Asplund, Farthest points in reflexive locally uniformly rotund Banach spaces, Israel J. Math. 4 (1966), 213-216.
  2. K. Bartke und H. Berens, Eine Beschreibung der Nichteindeutigkeitsmenge für die beste Approximation in der Euklidischen Ebene, J. Approx. Theory 47 (1986), 54-74.
  3. H. F. Bohnenblust and S. Karlin, Geometrical properties of the unit sphere of Banach algebras, Ann. of Math. 62 (1955), 217-229.
  4. J. M. Borwein and S. Fitzpatrick, Existence of nearest points in Banach spaces, Canad. J. Math. 41 (1989), 702-720.
  5. L. E. J. Brouwer, Beweis der Invarianz der Dimensionenzahl, Math. Ann. 70 (1911), 161-165.
  6. F. S. De Blasi, On typical compact convex sets in Hilbert spaces, Serdica 23 (1997), 255-268.
  7. F. S. De Blasi and T. Zamfirescu, Cardinality of the metric projection on compact sets in Hilbert space, Math. Proc. Cambridge Philos. Soc. 126 (1999), 37-44.
  8. R. De Ville and V. E. Zizler, Farthest points in w*-compact sets, Bull. Austral. Math. Soc. 38 (1988), 433-439.
  9. A. L. Dontchev and T. Zolezzi, Well-Posed Optimization Problems, Lecture Notes in Math. 1543, Springer, Berlin, 1993.
  10. M. Edelstein, Furthest points of sets in uniformly convex Banach spaces, Israel J. Math. 4 (1966), 171-176.
  11. P. M. Gruber, Die meisten konvexen Körper sind glatt, aber nicht zu glatt, Math. Ann. 229 (1977), 259-266.
  12. P. M. Gruber, A typical convex surface contains no closed geodesics, J. Reine Angew. Math. 416 (1991), 195-205.
  13. P. M. Gruber, Baire categories in geometry, in: Handbook of Convex Geometry, P. M. Gruber and J. M. Wills (eds.), North-Holland, Amsterdam, 1993, 1327-1346.
  14. V. Klee, Some new results on smoothness and rotundity in normed linear spaces, Math. Ann. 139 (1959), 51-63.
  15. K. S. Lau, Farthest points in weakly compact sets, Israel J. Math. 22 (1975), 168-174.
  16. C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Un. Mat. Ital. II 3 (1941), 5-7.
  17. J. C. Oxtoby, Measure and Category, Grad. Texts in Math. 2, Springer, New York, 1971.
  18. E. T. Poulsen, Convex sets with dense extreme points, Amer. Math. Monthly 66 (1959), 577-578.
  19. R. Schneider, On the curvature of convex bodies, Math. Ann. 240 (1979), 177-181.
  20. R. Schneider and J. A. Wieacker, Approximation of convex bodies by polytopes, Bull. London Math. Soc. 13 (1981), 149-156.
  21. I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Grundlehren Math. Wiss. 171, Springer, New York, 1970.
  22. S. B. Stečkin [S. B. Stechkin], Approximation properties of sets in normed linear spaces, Rev. Math. Pures Appl. 8 (1963), 5-18 (in Russian).
  23. J. A. Wieacker, The convex hull of a typical compact set, Math. Ann. 282 (1988), 637-644.
  24. T. Zamfirescu, Nearly all convex bodies are smooth and strictly convex, Monatsh. Math. 103 (1987), 57-62.
  25. T. Zamfirescu, The nearest point mapping is single valued nearly everywhere, Arch. Math. (Basel) 54 (1990), 563-566.
  26. T. Zamfirescu, Baire categories in convexity, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 139-164.
  27. N. V. Zhivkov, Compacta with dense ambiguous loci of metric projection and antiprojection, Proc. Amer. Math. Soc. 123 (1995), 3403-3411.
  28. N. V. Zhivkov, Densely two-valued metric projections in uniformly convex Banach spaces, Set-Valued Anal. 3 (1995), 195-209.
Pages:
143-162
Main language of publication
English
Received
1996-11-08
Accepted
1998-03-18
Published
1999
Exact and natural sciences