ArticleOriginal scientific text

Title

Boundedness of Marcinkiewicz functions.

Authors 1, 2

Affiliations

  1. Department of Mathematics, Nara Women's University, Kitauoya-Nishimachi, Nara 630-8506, Japan
  2. School of Science, Kwansei Gakuin University, Uegahara 1-1-155, Nishinomiya, Hyogo 662-8501, Japan

Abstract

The Lp boundedness(1 < p < ∞) of Littlewood-Paley's g-function, Lusin's S function, Littlewood-Paley's gλ-functions, and the Marcinkiewicz function is well known. In a sense, one can regard the Marcinkiewicz function as a variant of Littlewood-Paley's g-function. In this note, we treat counterparts μSϱ and μλ,ϱ to S and gλ. The definition of μSϱ(f) is as follows: μSϱ(f)(x)=(ʃ|y-x|<t|1tϱʃ|z|tΩz|z|n-ϱf(y-z)dz|2dydttn+1)12, where Ω(x) is a homogeneous function of degree 0 and Lipschitz continuous of order β (0 < β ≤ 1) on the unit sphere Sn-1, and ʃSn-1Ω(x)dσ(x)=0. We show that if σ = Reϱ > 0, then μSϱ is Lp bounded for max(1,2n/(n+2σ) < p < ∞, and for 0 < ϱ ≤ n/2 and 1 ≤ p ≤ 2n/(n+2ϱ), then Lp boundedness does not hold in general, in contrast to the case of the S function. Similar results hold for μλ,ϱ. Their boundedness in the Campanato space εα,p is also considered.

Keywords

Marcinkiewicz function, Littlewood-Paley function, area function

Bibliography

  1. A. Benedek, A. P. Calderón, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-3365.
  2. S. Chanillo and R. L. Wheeden, Some weighted norm inequalities for the area integral, Indiana Univ. Math. J. 36 (1987), 277-294.
  3. Y. S. Han, On some properties of s-function and Marcinkiewicz integrals, Acta Sci. Natur. Univ. Pekinensis 5 (1987), 21-34.
  4. L. Hörmander, Translation invariant operators, Acta Math. 104 (1960), 93-139.
  5. M. Kaneko and G.-I. Sunouchi, On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions, Tôhoku Math. J. (2) 37 (1985), 343-365.
  6. D. S. Kurtz, Littlewood-Paley operators on BMO, Proc. Amer. Math. Soc. 99 (1987), 657-666.
  7. S. G. Qiu, Boundedness of Littlewood-Paley operators and Marcinkiewicz integral on εα,p, J. Math. Res. Exposition 12 (1992), 41-50.
  8. E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466.
  9. E. M. Stein, Interpolation of linear operators, ibid. 83 (1956), 482-492.
  10. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
  11. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J. 1971.
  12. A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, Calif., 1986.
  13. A. Torchinsky and Shilin Wang, A note on the Marcinkiewicz integral, Colloq. Math. 60/61 (1990), 235-243.
  14. K. Yabuta, Boundedness of Littlewood-Paley operators, Math. Japon. 43 (1996), 134-150.
  15. Shilin Wang, Boundedness of the Littlewood-Paley g-function on Lipα(n) (0 < α < 1), Illinois J. Math. 33 (1989), 531-541.
  16. Silei Wang, Some properties of the Littlewood-Paley g-function, in: Contemp. Math. 42, Amer. Math. Soc., 1985, 191-202.
Pages:
103-142
Main language of publication
English
Received
1995-05-04
Accepted
1999-01-25
Published
1999
Exact and natural sciences