ArticleOriginal scientific text
Title
Boundedness of Marcinkiewicz functions.
Authors 1, 2
Affiliations
- Department of Mathematics, Nara Women's University, Kitauoya-Nishimachi, Nara 630-8506, Japan
- School of Science, Kwansei Gakuin University, Uegahara 1-1-155, Nishinomiya, Hyogo 662-8501, Japan
Abstract
The boundedness(1 < p < ∞) of Littlewood-Paley's g-function, Lusin's S function, Littlewood-Paley's -functions, and the Marcinkiewicz function is well known. In a sense, one can regard the Marcinkiewicz function as a variant of Littlewood-Paley's g-function. In this note, we treat counterparts and to S and . The definition of is as follows:
,
where Ω(x) is a homogeneous function of degree 0 and Lipschitz continuous of order β (0 < β ≤ 1) on the unit sphere , and . We show that if σ = Reϱ > 0, then is bounded for max(1,2n/(n+2σ) < p < ∞, and for 0 < ϱ ≤ n/2 and 1 ≤ p ≤ 2n/(n+2ϱ), then boundedness does not hold in general, in contrast to the case of the S function. Similar results hold for . Their boundedness in the Campanato space is also considered.
Keywords
Marcinkiewicz function, Littlewood-Paley function, area function
Bibliography
- A. Benedek, A. P. Calderón, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-3365.
- S. Chanillo and R. L. Wheeden, Some weighted norm inequalities for the area integral, Indiana Univ. Math. J. 36 (1987), 277-294.
- Y. S. Han, On some properties of s-function and Marcinkiewicz integrals, Acta Sci. Natur. Univ. Pekinensis 5 (1987), 21-34.
- L. Hörmander, Translation invariant operators, Acta Math. 104 (1960), 93-139.
- M. Kaneko and G.-I. Sunouchi, On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions, Tôhoku Math. J. (2) 37 (1985), 343-365.
- D. S. Kurtz, Littlewood-Paley operators on BMO, Proc. Amer. Math. Soc. 99 (1987), 657-666.
- S. G. Qiu, Boundedness of Littlewood-Paley operators and Marcinkiewicz integral on
, J. Math. Res. Exposition 12 (1992), 41-50. - E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466.
- E. M. Stein, Interpolation of linear operators, ibid. 83 (1956), 482-492.
- E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
- E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J. 1971.
- A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, Calif., 1986.
- A. Torchinsky and Shilin Wang, A note on the Marcinkiewicz integral, Colloq. Math. 60/61 (1990), 235-243.
- K. Yabuta, Boundedness of Littlewood-Paley operators, Math. Japon. 43 (1996), 134-150.
- Shilin Wang, Boundedness of the Littlewood-Paley g-function on
(0 < α < 1), Illinois J. Math. 33 (1989), 531-541. - Silei Wang, Some properties of the Littlewood-Paley g-function, in: Contemp. Math. 42, Amer. Math. Soc., 1985, 191-202.