ArticleOriginal scientific text
Title
Averages of uniformly continuous retractions
Authors 1, 2, 3, 1
Affiliations
- Departamento de Álgebra y Análisis Matemático, Universidad de Almería, 04120 Almería, Spain
- Departamento de Análisis, Matemático Universidad de Granada, 18071 Granada, Spain
- Department of Mathematics, Technion, Haifa 32000, Israel
Abstract
Let X be an infinite-dimensional complex normed space, and let B and S be its closed unit ball and unit sphere, respectively. We prove that the identity map on B can be expressed as an average of three uniformly retractions of B onto S. Moreover, for every 0≤ r < 1, the three retractions are Lipschitz on rB. We also show that a stronger version where the retractions are required to be Lipschitz does not hold.
Keywords
uniformly retraction, Lipschitz retraction, extreme point
Bibliography
- Y. Benyamini and Y. Sternfeld, Spheres in infinite dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc. 88 (1983), 439-445.
- V. Bogachev, J. F. Mena-Jurado and J. C. Navarro-Pascual, Extreme points in spaces of continuous functions, ibid. 123 (1995), 1061-1067.
- J. Cantwell, A topological approach to extreme points in function spaces, ibid. 19 (1968), 821-825.
- A. Jiménez-Vargas, J. F. Mena-Jurado and J. C. Navarro-Pascual, Complex extremal structure in spaces of continuous functions, J. Math. Anal. Appl. 211 (1997), 605-615.
- P. K. Lin and Y. Sternfeld, Convex sets with the Lipschitz fixed point property are compact, Proc. Amer. Math. Soc. 93 (1985) 633-639.
- J. C. Navarro-Pascual, Extreme points and retractions in Banach spaces, Israel J. Math. 99 (1997), 335-342.
- B. Nowak, On the Lipschitzian retraction of the unit ball in infinite-dimensional Banach spaces onto its boundary, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 861-864.
- N. T. Peck, Extreme points and dimension theory, Pacific J. Math. 25 (1968), 341-351.