ArticleOriginal scientific text

Title

Supercyclicity and weighted shifts

Authors 1

Affiliations

  1. Departamento de Matemáticas, Universidad de Puerto Rico, Mayagüez, Puerto Rico 00681

Abstract

An operator (linear and continuous) in a Fréchet space is hypercyclic if there exists a vector whose orbit under the operator is dense. If the scalar multiples of the elements in the orbit are dense, the operator is supercyclic. We give, for Fréchet space operators, a Supercyclicity Criterion reminiscent of the Hypercyclicity Criterion. We characterize the supercyclic bilateral weighted shifts in terms of their weight sequences. As a consequence, we show that a bilateral weighted shift is supercyclic if and only if it satisfies the Supercyclicity Criterion. We exhibit two supercyclic, irreducible Hilbert space operators which are C*-isomorphic, but one is hypercyclic and the other is not. We prove that a Banach space operator which satisfies a version of the Supercyclicity Criterion, and has zero in its left essential spectrum, has an infinite-dimensional closed subspace whose nonzero vectors are supercyclic.

Keywords

hypercyclic and supercyclic vectors, Hypercyclicity Criterion, Supercyclicity Criterion, weighted shifts, semi-Fredholm operators in Banach spaces, left essential spectrum, basic sequences.

Bibliography

  1. S. I. Ansari, Existence of hypercyclic operators on topological vector spaces, J. Funct. Anal. 148 (1997), 384-390.
  2. S. I. Ansari and P. S. Bourdon, Some properties of cyclic operators, Acta Sci. Math. (Szeged) 63 (1997), 195-207.
  3. B. Beauzamy, Un opérateur sans sous-espace invariant: Simplification de l'exemple de P. Enflo, J. Integral Equations Operator Theory 8 (1985), 314-384.
  4. B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North-Holland Math. Library 42, North-Holland, 1988.
  5. L. Bernal-González and A. Montes-Rodríguez, Non-finite dimensional closed vector spaces of universal functions for composition operators, J. Approx. Theory 82 (1995), 375-391.
  6. J. P. Bès, Hereditary hypercyclic operators and the hypercyclicity criterion, preprint.
  7. G. D. Birkhoff, Démonstration d'un théorème élémentaire sur les fonctions entières, C. R. Acad. Sci. Paris 189 (1929), 473-475.
  8. P. S. Bourdon, Invariant manifolds of hypercyclic operators, Proc. Amer. Math. Soc. 118 (1993), 1577-1581.
  9. P. S. Bourdon, Orbits of hyponormal operators, Michigan Math. J. 44 (1997), 345-353.
  10. K. C. Chan and J. H. Shapiro, The cyclic behavior of translation operators on Hilbert spaces of entire functions, Indiana Univ. Math. J. 40 (1991), 1421-1449.
  11. J. B. Conway, A Course in Functional Analysis, 2nd ed., Springer, New York, 1990.
  12. R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), 281-288.
  13. G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), 239-269.
  14. K.-G. Große-Erdmann, Holomorphe Monster und universelle Funktionen, Mitt. Math. Sem. Giessen 176 (1987), 1-84.
  15. D. A. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal. 99 (1991), 179-190.
  16. D. A. Herrero, Hypercyclic operators and chaos, J. Operator Theory 28 (1992), 93-103.
  17. D. A. Herrero and C. Kitai, On invertible hypercyclic operators, Proc. Amer. Math. Soc. 116 (1992), 873-875.
  18. D. A. Herrero and Z. Y. Wang, Compact perturbations of hypercyclic and supercyclic operators, Indiana Univ. Math. J. 39 (1990), 819-829.
  19. G. Herzog, On linear operators having supercyclic vectors, Studia Math. 103 (1992), 295-298.
  20. H. M. Hilden and L. J. Wallen, Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J. 24 (1974), 557-565.
  21. C. Kitai, Invariant closed sets for linear operators, thesis, Univ. of Toronto, 1982.
  22. F. León-Saavedra and A. Montes-Rodríguez, Linear structure of hypercyclic vectors, J. Funct. Anal. 148 (1997), 524-545.
  23. F. León-Saavedra and A. Montes-Rodríguez, Spectral theory and hypercyclic subspaces, Trans. Amer. Math. Soc., to appear.
  24. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin, 1977.
  25. V. G. Miller, Remarks on finitely hypercyclic and finitely supercyclic operators, Integral Equations Operator Theory 29 (1997), 110-115.
  26. A. Montes-Rodríguez, Banach spaces of hypercyclic vectors, Michigan Math. J. 43 (1996), 419-436.
  27. A. Montes-Rodríguez and H. N. Salas, Supercyclic operators, in preparation.
  28. D. P. O'Donovan, Weighted shifts and covariance algebras, Trans. Amer. Math. Soc. 208 (1975), 1-25.
  29. C. J. Read, The invariant subspace problem for a class of Banach spaces, 2: Hypercyclic operators, Israel J. Math. 63 (1988), 1-40.
  30. S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22.
  31. H. N. Salas, Semigroup of isometries with commuting range projections, J. Operator Theory 14 (1985), 331-346.
  32. H. N. Salas, A hypercyclic operator whose adjoint is also hypercyclic, Proc. Amer. Math. Soc. 112 (1991), 765-770.
  33. H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), 993-1004.
  34. J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, New York, 1993.
  35. A. L. Shields, Weighted shift operators and analytic function theory, in: Topics in Operator Theory, Math. Surveys 13, Amer. Math. Soc., Providence, R.I., 2nd printing, 1979, 49-128.
  36. J. Zemánek, The semi-Fredholm radius of a linear operator, Bull. Polish Acad. Sci. Math. 32 (1984), 67-76.
Pages:
55-74
Main language of publication
English
Received
1998-04-21
Accepted
1998-10-23
Published
1999
Exact and natural sciences