ArticleOriginal scientific text
Title
Interpolation of the measure of non-compactness by the real method
Authors 1, 2, 3
Affiliations
- Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Departamento de Matemática Aplicada, Universidad de Murcia, Campus de Espinardo, 30071 Espinardo (Murcia), Spain
- Departamento de Matemática Aplicada, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Vigo, Lagoas-Marcosende, 36200 Vigo, Spain
Abstract
We investigate the behaviour of the measure of non-compactness of an operator under real interpolation. Our results refer to general Banach couples. An application to the essential spectral radius of interpolated operators is also given.
Bibliography
- E. Albrecht, Spectral interpolation, in: Oper. Theory Adv. Appl. 14, Birkhäuser, Basel, 1984.
- J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.
- B. Carl and I. Stephani, Entropy, Compactness and the Approximation of Operators, Cambridge Univ. Press, Cambridge, 1990.
- F. Cobos, D. E. Edmunds and A. J. B. Potter, Real interpolation and compact linear operators, J. Funct. Anal. 88 (1990), 351-365.
- F. Cobos, T. Kühn and T. Schonbek, One-sided compactness results for Aronszajn-Gagliardo functors, ibid. 106 (1992), 274-313.
- F. Cobos and J. Peetre, Interpolation of compactness using Aronszajn-Gagliardo functors, Israel J. Math. 68 (1989), 220-240.
- F. Cobos and J. Peetre, Interpolation of compact operators: The multidimensional case, Proc. London Math. Soc. 63 (1991), 371-400.
- F. Cobos and L. E. Persson, Real interpolation of compact operators between quasi-Banach spaces, Math. Scand. 82 (1998), 138-160.
- M. Cwikel, Real and complex interpolation and extrapolation of compact operators, Duke Math. J. 65 (1992), 333-343.
- D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987.
- M. A. Krasnosel'skiĭ, On a theorem of M. Riesz, Soviet Math. Dokl. 1 (1960), 229-231.
- M. A. Krasnosel'skiĭ, P. P. Zabreĭko, E. I. Pustyl'nik and P. E. Sobolevskiĭ, Integral Operators in Spaces of Summable Functions, Noordhoff, Leiden, 1976.
- R. D. Nussbaum, The radius of the essential spectrum, Duke Math. J. 37 (1970), 473-479.
- A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.
- M. F. Teixeira and D. E. Edmunds, Interpolation theory and measures of non-compactness, Math. Nachr. 104 (1981), 129-135.
- H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.