ArticleOriginal scientific textConvergence in nonisotropic regions of harmonic functions in
Title
Convergence in nonisotropic regions of harmonic functions in
Authors 1, 1
Affiliations
- Departament de Matemàtica Aplicada i Anàlisi, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain
Abstract
We study the boundedness in of the projections onto spaces of functions with spectrum contained in horizontal strips. We obtain some results concerning convergence along nonisotropic regions of harmonic extensions of functions in with spectrum included in these horizontal strips.
Keywords
harmonic and holomorphic functions, tangential convergence
Bibliography
- [AhBr] P. Ahern and J. Bruna, Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of
, Rev. Mat. Iberoamericana 4 (1988), 123-153. - [AhCa] P. Ahern and C. Cascante, Exceptional sets for Poisson integrals of potentials on the unit sphere in
, p≤1!$!, Pacific J. Math. 153 (1992), 1-13. - [Al] A. B. Aleksandrov, Several Complex Variables II, Encyclopaedia Math. Sci. 8, G. M. Khenkin and A. G. Vitushkin (eds.), Springer, 1991.
- [BeLo] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, 1976.
- [BoCl] A. Bonami et J.-L. Clerc, Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223-263.
- [BrCa] J. Bruna and C. Cascante, Restriction to transverse curves of some spaces of functions in the unit ball, Michigan Math. J. 36 (1989), 387-401.
- [BrOr] J. Bruna and J. M. Ortega, Closed finitely generated ideals in algebras of holomorphic functions and smooth to the boundary in strictly pseudoconvex domains, Math. Ann. 268 (1984), 137-157.
- [CaOr] C. Cascante and J. M. Ortega, A characterisation of tangential exceptional sets for
, α p=n, Proc. Roy. Soc. Edinburgh 126 (1996), 625-641. - [Ch] E. M. Chirka, The Lindelöf and Fatou theorems in
, Mat. Sb. 92 (1973), 622-644 (in Russian). - [Do] E. Doubtsov, thesis, Université Bordeaux I, 1995.
- [GaRu] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, 1985.
- [Ge] D. Geller, Some results in
theory for the Heisenberg group, Duke Math. J. 47 (1980), 365-390. - [Kr1] V. G. Krotov, Estimates for maximal operators connected with boundary behavior and their applications, Trudy Mat. Inst. Steklov. 190 (1989), 117-138 (in Russian); English transl.: Proc. Steklov Inst. Math. 1 (1992), 123-144.
- [Kr2] V. G. Krotov, A sharp estimate of the boundary behavior of functions in the Hardy-Sobolev classes
in the critical case α p=n, Dokl. Akad. Nauk SSSR 319 (1991), 42-45 (in Russian); English transl.: Soviet Math. Dokl. 44 (1992), 36-39. - [Li] E. Lindelöf, Sur un principe générale de l'analyse et ses applications à la théorie de la représentation conforme, Acta Soc. Sci. Fenn. 46 (1915), 1-35.
- [NaRoStWa] A. Nagel, J. P. Rosay, E. M. Stein and S. Wainger, Estimates for the Bergman and Szegő kernels in
, Ann. of Math. 129 (1989), 113-149. - [NaRu] A. Nagel and W. Rudin, Local boundary behavior of bounded holomorphic functions, Canad. J. Math. 30 (1978), 583-592.
- [NaRuSh] A. Nagel, W. Rudin and J. H. Shapiro, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math. 116 (1982), 331-360.
- [NaWa] A. Nagel and S. Wainger, Limits of bounded holomorphic functions along curves, in: Recent Developments in Several Complex Variables, J. E. Fornaess (ed.), Princeton Univ. Press, 1981, 327-344.
- [Ru] W. Rudin, Function Theory in the Unit Ball of
, Springer, 1980. - [St] J. D. Stafney, The spectrum of an operator on an interpolation space, Trans. Amer. Math. Soc. 144 (1969), 333-349.
- [Su] J. Sueiro, Tangential boundary limits and exceptional sets for holomorphic functions in Dirichlet-type spaces, Math. Ann. 286 (1990), 661-678.
- [TrEr] F. G. Tricomi and A. Erdélyi, The asymptotic expansion of a ratio of gamma functions, Pacific J. Math. 1 (1951), 133-142.
- [Zy] A. Zygmund, On a theorem of Littlewood, Summa Brasil. Math. 2 (1949), 1-7.