ArticleOriginal scientific text

Title

Embedding of random vectors into continuous martingales

Authors 1

Affiliations

  1. Mathematisches Institut der Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany

Abstract

Let E be a real, separable Banach space and denote by L0(Ω,E) the space of all E-valued random vectors defined on the probability space Ω. The following result is proved. There exists an extension {wΩ~} of Ω, and a filtration ({w~}t)t0 on {wΩ~}, such that for every XL0(Ω,E) there is an E-valued, continuous ({w~}t)-martingale (Mt(X))t0 in which X is embedded in the sense that X=Mτ(X) a.s. for an a.s. finite stopping time τ. For E = ℝ this gives a Skorokhod embedding for all XL0(Ω,), and for general E this leads to a representation of random vectors as stochastic integrals relative to a Brownian motion.

Keywords

Skorokhod embedding, martingale, stochastic integral, Brownian motion

Bibliography

  1. J. Azéma et M. Yor, Une solution simple au problème de Skorohod, in: Séminaire de Probabilités XIII, Lecture Notes in Math. 721, Springer, 1979, 90-115 and 625-633.
  2. R. Chacon and J. B. Walsh, One-dimensional potential embedding, in: Séminaire de Probabilités X, Lecture Notes in Math. 511, Springer, 1976, 19-23.
  3. E. Dettweiler, Banach space valued processes with independent increments and stochastic integration, in: Probability in Banach Spaces IV, Lecture Notes in Math. 990, Springer, 1983, 54-83.
  4. E. Dettweiler, Stochastic integration of Banach space valued functions, in: L. Arnold and P. Kotelenez (eds.), Stochastic Space-Time Models and Limit Theorems, Reidel, 1985, 53-79.
  5. L. Dubins, On a theorem of Skorohod, Ann. Math. Statist. 39 (1968), 2094-2097.
  6. L. Dubins and G. Schwarz, On continuous martingales, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 913-916.
  7. R. M. Dudley, Wiener functionals as Itô integrals, Ann. Probab. 5 (1977), 140-141.
  8. R. M. Dudley, Real Analysis and Probability, Wadsworth & Brooks-Cole, 1989.
  9. J. Hoffmann - Jοrgensen, Probability in Banach spaces, in: Ecole d'Eté de Probabilités de Saint-Flour VI, Lecture Notes in Math. 598, Springer, 1977, 1-186.
  10. I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, l988.
  11. A. V. Skorohod [A. V. Skorokhod], Studies in the Theory of Random Processes, Addison-Wesley, 1965.
Pages:
251-268
Main language of publication
English
Received
1998-01-29
Accepted
1998-07-12
Published
1999
Exact and natural sciences