ArticleOriginal scientific text
Title
Embedding of random vectors into continuous martingales
Authors 1
Affiliations
- Mathematisches Institut der Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
Abstract
Let E be a real, separable Banach space and denote by the space of all E-valued random vectors defined on the probability space Ω. The following result is proved. There exists an extension of Ω, and a filtration on , such that for every there is an E-valued, continuous -martingale in which X is embedded in the sense that a.s. for an a.s. finite stopping time τ. For E = ℝ this gives a Skorokhod embedding for all , and for general E this leads to a representation of random vectors as stochastic integrals relative to a Brownian motion.
Keywords
Skorokhod embedding, martingale, stochastic integral, Brownian motion
Bibliography
- J. Azéma et M. Yor, Une solution simple au problème de Skorohod, in: Séminaire de Probabilités XIII, Lecture Notes in Math. 721, Springer, 1979, 90-115 and 625-633.
- R. Chacon and J. B. Walsh, One-dimensional potential embedding, in: Séminaire de Probabilités X, Lecture Notes in Math. 511, Springer, 1976, 19-23.
- E. Dettweiler, Banach space valued processes with independent increments and stochastic integration, in: Probability in Banach Spaces IV, Lecture Notes in Math. 990, Springer, 1983, 54-83.
- E. Dettweiler, Stochastic integration of Banach space valued functions, in: L. Arnold and P. Kotelenez (eds.), Stochastic Space-Time Models and Limit Theorems, Reidel, 1985, 53-79.
- L. Dubins, On a theorem of Skorohod, Ann. Math. Statist. 39 (1968), 2094-2097.
- L. Dubins and G. Schwarz, On continuous martingales, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 913-916.
- R. M. Dudley, Wiener functionals as Itô integrals, Ann. Probab. 5 (1977), 140-141.
- R. M. Dudley, Real Analysis and Probability, Wadsworth & Brooks-Cole, 1989.
- J. Hoffmann - Jοrgensen, Probability in Banach spaces, in: Ecole d'Eté de Probabilités de Saint-Flour VI, Lecture Notes in Math. 598, Springer, 1977, 1-186.
- I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, l988.
- A. V. Skorohod [A. V. Skorokhod], Studies in the Theory of Random Processes, Addison-Wesley, 1965.