ArticleOriginal scientific text

Title

Implicit functions from locally convex spaces to Banach spaces

Authors 1

Affiliations

  1. Institute of Mathematics, Helsinki University of Technology, 02150 Espoo, Finland

Abstract

We first generalize the classical implicit function theorem of Hildebrandt and Graves to the case where we have a Keller CΠk-map f defined on an open subset of E×F and with values in F, for E an arbitrary Hausdorff locally convex space and F a Banach space. As an application, we prove that under a certain transversality condition the preimage of a submanifold is a submanifold for a map from a Fréchet manifold to a Banach manifold.

Bibliography

  1. A. Frölicher and W. Bucher, z Calculus in Vector Spaces without Norm, Lecture Notes in Math. 30, Springer, Berlin, 1966.
  2. A. Frölicher and A. Kriegl, z Linear Spaces and Differentiation Theory, Pure Appl. Math., Wiley, Chichester, 1988.
  3. M. W. Hirsch, Differential Topology, Springer, New York, 1976.
  4. H. H. Keller, z Differential Calculus in Locally Convex Spaces, Lecture Notes in Math. 417, Springer, Berlin, 1974.
  5. A. Kriegl, Eine kartesisch abgeschlossene Kategorie glatter Abbildungen zwischen beliebigen lokalkonvexen Vektorräumen, Monatsh. Math. 95 (1983), 287-309.
  6. A. Kriegl and P. W. Michor, z Aspects of the theory of infinite dimensional manifolds, Differential Geom. Appl. 1 (1991), 159-176.
  7. S. Lang, Differential Manifolds, Springer, New York, 1988.
  8. U. Seip, Kompakt erzeugte Vektorräume und Analysis, Lecture Notes in Math. 273, Springer, Berlin, 1972.
Pages:
235-250
Main language of publication
English
Received
1997-12-03
Accepted
1998-10-19
Published
1999
Exact and natural sciences