ArticleOriginal scientific text
Title
Implicit functions from locally convex spaces to Banach spaces
Authors 1
Affiliations
- Institute of Mathematics, Helsinki University of Technology, 02150 Espoo, Finland
Abstract
We first generalize the classical implicit function theorem of Hildebrandt and Graves to the case where we have a Keller -map f defined on an open subset of E×F and with values in F, for E an arbitrary Hausdorff locally convex space and F a Banach space. As an application, we prove that under a certain transversality condition the preimage of a submanifold is a submanifold for a map from a Fréchet manifold to a Banach manifold.
Bibliography
- A. Frölicher and W. Bucher, z Calculus in Vector Spaces without Norm, Lecture Notes in Math. 30, Springer, Berlin, 1966.
- A. Frölicher and A. Kriegl, z Linear Spaces and Differentiation Theory, Pure Appl. Math., Wiley, Chichester, 1988.
- M. W. Hirsch, Differential Topology, Springer, New York, 1976.
- H. H. Keller, z Differential Calculus in Locally Convex Spaces, Lecture Notes in Math. 417, Springer, Berlin, 1974.
- A. Kriegl, Eine kartesisch abgeschlossene Kategorie glatter Abbildungen zwischen beliebigen lokalkonvexen Vektorräumen, Monatsh. Math. 95 (1983), 287-309.
- A. Kriegl and P. W. Michor, z Aspects of the theory of infinite dimensional manifolds, Differential Geom. Appl. 1 (1991), 159-176.
- S. Lang, Differential Manifolds, Springer, New York, 1988.
- U. Seip, Kompakt erzeugte Vektorräume und Analysis, Lecture Notes in Math. 273, Springer, Berlin, 1972.