Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

1999 | 134 | 3 | 217-233

Tytuł artykułu

The Conley index in Hilbert spaces and its applications

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We present a generalization of the classical Conley index defined for flows on locally compact spaces to flows on an infinite-dimensional real Hilbert space H generated by vector fields of the form f: H → H, f(x) = Lx + K(x), where L: H → H is a bounded linear operator satisfying some technical assumptions and K is a completely continuous perturbation. Simple examples are presented to show how this new invariant can be applied in searching critical points of strongly indefinite functionals having asymptotically linear gradient.

Słowa kluczowe

Czasopismo

Rocznik

Tom

134

Numer

3

Strony

217-233

Opis fizyczny

Daty

wydano
1999
otrzymano
1997-11-17
poprawiono
1998-10-02

Twórcy

autor
  • Institute of Mathematics, Polish Academy of Sciences, 18 Abrahama St., 81-825 Sopot, Poland.
autor
  • Institute of Mathematics, Polish Academy of Sciences, 18 Abrahama St., 81-825 Sopot, Poland.
autor
  • Institute of Mathematics, Polish Academy of Sciences, 18 Abrahama St., 81-825 Sopot, Poland.

Bibliografia

  • [1] H. Amann and E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math. 32 (1980), 149-189.
  • [2] V. Benci, A new approach to the Morse-Conley theory and some applications, Ann. Mat. Pura Appl. (4) 158 (1991), 231-305.
  • [3] K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993.
  • [4] K. C. Chang, S. P. Wu and S. J. Li, Multiple periodic solutions for an asymptotically linear wave equation, Indiana Univ. Math. J. 31 (1982), 721-731.
  • [5] C. C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conf. Ser. in Math. 38, Amer. Math. Soc., Providence, R.I., 1978.
  • [6] C. C. Conley and E. Zehnder, Morse type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), 207-253.
  • [7] K. Deimling, Ordinary Differential Equations in Banach Spaces, Lecture Notes in Math. 596, Springer, 1977.
  • [8] J. Dugundji and A. Granas, Fixed Point Theory, Vol. I, Monograf. Mat. 61, PWN-Polish Sci. Publ., 1982.
  • [9] S. Li and J. Q. Liu, Morse theory and asymptotic linear Hamiltonian systems, J. Differential Equations 79 (1988), 53-73.
  • [10] Y. Long, The Index Theory of Hamiltonian Systems with Applications, Science Press, Beijing, 1993.
  • [11] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, 1989.
  • [12] K. Mischaikow, Conley index theory, in: Dynamical Systems, R. Johnson (ed.), Lecture Notes in Math. 1609, Springer, 1995, 119-207.
  • [13] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. 35, Amer. Math. Soc. Providence, R.I., 1986.
  • [14] P. H. Rabinowitz, Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math. 31 (1978), 31-68.
  • [15] K. Rybakowski, The Homotopy Index and Partial Differential Equations, Universitext, Springer, 1987.
  • [16] D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), 1-41.
  • [17] A. Szulkin, Cohomology and Morse theory for strongly indefinite functionals, Math. Z. 209 (1992), 375-418.
  • [18] A. Szulkin, Index theories for indefinite functionals and applications, in: Topological and Variational Methods for Nonlinear Boundary Value Problems (Cholin, 1995), Pitman Res. Notes Math. Ser. 365, Longman, 1997, 89-121.
  • [19] C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation, Comm. Partial Differential Equations 21 (1996), 1431-1449.
  • [20] G. W. Whitehead, Recent Advances in Homotopy Theory, CMBS Regional Conf. Ser. in Math. 5, Amer. Math. Soc., Providence, R.I., 1970.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-smv134i3p217bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.