ArticleOriginal scientific text
Title
Perturbation theorems for Hermitian elements in Banach algebras
Authors 1, 2
Affiliations
- Indian Statistical Institute, New Delhi 110 016, India
- Department of Mathematics, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
Abstract
Two well-known theorems for Hermitian elements in C*-algebras are extended to Banach algebras. The first concerns the solution of the equation ax - xb = y, and the second gives sharp bounds for the distance between spectra of a and b when a, b are Hermitian.
Keywords
Banach algebra, Hermitian element, spectral radius
Bibliography
- B. Aupetit, A Primer on Spectral Theory, Springer, 1991.
- B. Aupetit and D. Drissi Local spectrum and subharmonicity, Proc. Edinburgh Math. Soc. 39 (1996), 571-579.
- R. Bhatia, Matrix Analysis, Springer, 1997.
- R. Bhatia, C. Davis and P. Koosis, An extremal problem in Fourier analysis with applications to operator theory, J. Funct. Anal. 82 (1989), 138-150.
- R. Bhatia, C. Davis and A. McIntosh, Perturbation of spectral subspaces and solution of linear operator equations, Linear Algebra Appl. 52-53 (1983), 45-67.
- R. Bhatia and P. Rosenthal, How and why to solve the operator equation AX - XB = Y, Bull. London Math. Soc. 29 (1997), 1-21.
- F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge Univ. Press, 1971.
- A. Browder, On Bernstein's inequality and the norm of Hermitian operators, Amer. Math. Monthly 78 (1971), 871-873.
- D. E. Evans, On the spectrum of a one-parameter strongly continuous representation, Math. Scand. 39 (1976), 80-82.
- U. Haagerup and L. Zsidó, Resolvent estimate for Hermitian operators and a related minimal extrapolation problem, Acta Sci. Math. (Szeged) 59 (1994), 503-524.
- V. E. Katsnelson, A conservative operator has norm equal to its spectral radius, Mat. Issled. 5 (1970), 186-189 (in Russian).
- A. N. Kolmogorov, On inequalities between upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Uchen. Zap. Moskov. Gos. Univ. Mat. 30 (1939), 3-16 (in Russian); English transl.: Amer. Math. Soc. Transl. 4 (1949), 233-243.
- B. Ya. Levin, Lectures on Entire Functions, Transl. Math. Monographs 150, Amer. Math. Soc., 1996.
- R. McEachin, A sharp estimate in an operator inequality, Proc. Amer. Math. Soc. 115 (1992), 161-165.
- J. R. Partington, The resolvent of a Hermitian operator on a Banach space, J. London Math. Soc. (2) 27 (1983), 507-512.
- A. M. Sinclair, The norm of a Hermitian element in a Banach algebra, Proc. Amer. Math. Soc. 28 (1971), 446-450.
- B. Sz.-Nagy, Über die Ungleichung von H. Bohr, Math. Nachr. 9 (1953), 255-259.
- B. Sz.-Nagy and A. Strausz, On a theorem of H. Bohr, Mat. Termész. Értes. 57 (1938), 121-133 (in Hungarian).