ArticleOriginal scientific text

Title

Perturbation theorems for Hermitian elements in Banach algebras

Authors 1, 2

Affiliations

  1. Indian Statistical Institute, New Delhi 110 016, India
  2. Department of Mathematics, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

Abstract

Two well-known theorems for Hermitian elements in C*-algebras are extended to Banach algebras. The first concerns the solution of the equation ax - xb = y, and the second gives sharp bounds for the distance between spectra of a and b when a, b are Hermitian.

Keywords

Banach algebra, Hermitian element, spectral radius

Bibliography

  1. B. Aupetit, A Primer on Spectral Theory, Springer, 1991.
  2. B. Aupetit and D. Drissi Local spectrum and subharmonicity, Proc. Edinburgh Math. Soc. 39 (1996), 571-579.
  3. R. Bhatia, Matrix Analysis, Springer, 1997.
  4. R. Bhatia, C. Davis and P. Koosis, An extremal problem in Fourier analysis with applications to operator theory, J. Funct. Anal. 82 (1989), 138-150.
  5. R. Bhatia, C. Davis and A. McIntosh, Perturbation of spectral subspaces and solution of linear operator equations, Linear Algebra Appl. 52-53 (1983), 45-67.
  6. R. Bhatia and P. Rosenthal, How and why to solve the operator equation AX - XB = Y, Bull. London Math. Soc. 29 (1997), 1-21.
  7. F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge Univ. Press, 1971.
  8. A. Browder, On Bernstein's inequality and the norm of Hermitian operators, Amer. Math. Monthly 78 (1971), 871-873.
  9. D. E. Evans, On the spectrum of a one-parameter strongly continuous representation, Math. Scand. 39 (1976), 80-82.
  10. U. Haagerup and L. Zsidó, Resolvent estimate for Hermitian operators and a related minimal extrapolation problem, Acta Sci. Math. (Szeged) 59 (1994), 503-524.
  11. V. E. Katsnelson, A conservative operator has norm equal to its spectral radius, Mat. Issled. 5 (1970), 186-189 (in Russian).
  12. A. N. Kolmogorov, On inequalities between upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Uchen. Zap. Moskov. Gos. Univ. Mat. 30 (1939), 3-16 (in Russian); English transl.: Amer. Math. Soc. Transl. 4 (1949), 233-243.
  13. B. Ya. Levin, Lectures on Entire Functions, Transl. Math. Monographs 150, Amer. Math. Soc., 1996.
  14. R. McEachin, A sharp estimate in an operator inequality, Proc. Amer. Math. Soc. 115 (1992), 161-165.
  15. J. R. Partington, The resolvent of a Hermitian operator on a Banach space, J. London Math. Soc. (2) 27 (1983), 507-512.
  16. A. M. Sinclair, The norm of a Hermitian element in a Banach algebra, Proc. Amer. Math. Soc. 28 (1971), 446-450.
  17. B. Sz.-Nagy, Über die Ungleichung von H. Bohr, Math. Nachr. 9 (1953), 255-259.
  18. B. Sz.-Nagy and A. Strausz, On a theorem of H. Bohr, Mat. Termész. Értes. 57 (1938), 121-133 (in Hungarian).
Pages:
111-117
Main language of publication
English
Received
1997-07-02
Accepted
1998-10-13
Published
1999
Exact and natural sciences