ArticleOriginal scientific text
Title
On coerciveness in Besov spaces for abstract parabolic equations of higher order
Authors 1
Affiliations
- Department of Applied Physics, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Abstract
We are concerned with a relation between parabolicity and coerciveness in Besov spaces for a higher order linear evolution equation in a Banach space. As proved in a preceding work, a higher order linear evolution equation enjoys coerciveness in Besov spaces under a certain parabolicity condition adopted and studied by several authors. We show that for a higher order linear evolution equation coerciveness in Besov spaces forces the parabolicity of the equation. We thus conclude that parabolicity and coerciveness in Besov spaces are equivalent.
Bibliography
- J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976.
- H. Brézis and L. E. Fraenkel, A function with prescribed initial derivatives in different Banach spaces, J. Funct. Anal. 29 (1978), 328-335.
- P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Springer, Berlin, 1967.
- G. Da Prato et P. Grisvard, Sommes d'opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures Appl. 54 (1975), 305-387.
- G. Da Prato and E. Sinestrari, Differential operators with non dense domain, Ann. Scuola Norm. Sup. Pisa 14 (1987), 285-344.
- G. Di Blasio, Linear parabolic evolution equations in
-spaces, Ann. Mat. 138 (1984), 55-104. - Yu. A. Dubinskiĭ, On some differential-operator equations of arbitrary order, Math. USSR-Sb. 19 (1973), 1-21.
- A. Favini and E. Obrecht, Conditions for parabolicity of second order abstract differential equations, Differential Integral Equations 4 (1991), 1005-1022.
- A. Favini and H. Tanabe, On regularity of solutions to n-order differential equations of parabolic type in Banach spaces, Osaka J. Math. 31 (1994), 225-246.
- P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pures Appl. 45 (1966), 207-290.
- P. Grisvard, Équations différentielles abstraites, Ann. Sci. École Norm. Sup. 2 (1969), 311-395.
- J. Lagnese, On equations of evolution and parabolic equations of higher order in t, J. Math. Anal. Appl. 32 (1970), 15-37.
- T. Muramatu, On Besov spaces of functions defined in general regions, Publ. R.I.M.S. Kyoto Univ. 6 (1970),//1971 515-543.
- T. Muramatu, On Besov spaces and Sobolev spaces of generalized functions defined on a general region, ibid. 9 (1974), 325-396.
- T. Muramatu, Besov spaces and analytic semigroups of linear operators, J. Math. Soc. Japan 42 (1990), 133-146.
- E. Obrecht, Sul problema di Cauchy per le equazioni paraboliche astratte di ordine n, Rend. Sem. Mat. Univ. Padova 53 (1975), 231-256.
- E. Obrecht, Evolution operators for higher order abstract parabolic equations, Czechoslovak Math. J. 36 (111) (1986), 210-222.
- E. Obrecht, The Cauchy problem for time-dependent abstract parabolic equations of higher order, J. Math. Anal. Appl. 125 (1987), 508-530.
- E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl. 107 (1985), 16-66.
- P. E. Sobolevskiĭ, Coerciveness inequalities for abstract parabolic equations, Soviet Math. Dokl. 5 (1964), 894-897.
- H. Tanabe, Equations of Evolution, Pitman, London, 1979.
- H. Tanabe, Volterra integro-differential equations of parabolic type of higher order in t, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 111-125.
- H. Tanabe, On fundamental solutions of linear parabolic equations of higher order in time and associated Volterra equations, J. Differential Equations 73 (1988), 288-308.
- H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
- Y. Yamamoto, Remarks on coerciveness in Besov spaces for abstract parabolic equations, J. Math. Kyoto Univ. 34 (1994), 207-218.
- Y. Yamamoto, Solutions in Besov spaces of a class of abstract parabolic equations of higher order in time, ibid. 38 (1998), 201-227.