ArticleOriginal scientific text

Title

Uniqueness of unconditional bases in c0-products

Authors 1, 1

Affiliations

  1. Department of Mathematics, University of Missouri, Columbia, Missouri 65211, U.S.A.

Abstract

We give counterexamples to a conjecture of Bourgain, Casazza, Lindenstrauss and Tzafriri that if X has a unique unconditional basis (up to permutation) then so does c0(X). We also give some positive results including a simpler proof that c0(1) has a unique unconditional basis and a proof that c0(pnNn) has a unique unconditional basis when pn1, Nn+12Nn and (pn-pn+1)logNn remains bounded.

Bibliography

  1. B. Bollobas, Combinatorics, Cambridge Univ. Press, 1986.
  2. J. Bourgain, On the Dunford-Pettis property, Proc. Amer. Math. Soc. 81 (1981), 265-272.
  3. J. Bourgain, P. G. Casazza, J. Lindenstrauss and L. Tzafriri, Banach spaces with a unique unconditional basis, up to a permutation, Mem. Amer. Math. Soc. 322 (1985).
  4. P. G. Casazza and N. J. Kalton, Uniqueness of unconditional bases in Banach spaces, Israel J. Math. 103 (1998), 141-176.
  5. P. G. Casazza and T. J. Schura, Tsirelson's Space, Lecture Notes in Math. 1363, Springer, 1989.
  6. I. S. Edelstein and P. Wojtaszczyk, On projections and unconditional bases in direct sums of Banach spaces, Studia Math. 56 (1976), 263-276.
  7. T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94.
  8. W. T. Gowers, A solution to Banach's hyperplane problem, Bull. London Math. Soc. 26 (1994), 523-530.
  9. G. Köthe and O. Toeplitz, Lineare Räume mit unendlich vielen Koordinaten und Ringen unendlicher Matrizen, J. Reine Angew. Math. 171 (1934), 193-226.
  10. J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in Lp-spaces and their applications, Studia Math. 29 (1968), 315-349.
  11. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977.
  12. J. Lindenstrauss and M. Zippin, Banach spaces with a unique unconditional basis, J. Funct. Anal. 3 (1969), 115-125.
  13. V. D. Milman and G. Schechtman, Asymptotic Theory of Finite-Dimensional Spaces, Lecture Notes in Math. 1200, Springer, 1986.
  14. B. S. Mityagin, Equivalence of bases in Hilbert scales, Studia Math. 37 (1970), 111-137 (in Russian).
  15. G. Pisier, The Volume of Convex Bodies and Geometry of Banach Spaces, Cambridge Tracts in Math. 94, Cambridge Univ. Press, 1989.
  16. P. Wojtaszczyk, Uniqueness of unconditional bases in quasi-Banach spaces with applications to Hardy spaces, II, Israel J. Math 97 (1997), 253-280.
  17. M. Wojtowicz, On Cantor-Bernstein type theorems in Riesz spaces, Indag. Math. 91 (1988), 93-100.
Pages:
275-294
Main language of publication
English
Received
1998-05-15
Published
1999
Exact and natural sciences