ArticleOriginal scientific text

Title

A theorem on isotropic spaces

Authors 1

Affiliations

  1. Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas, 06071 Badajoz, Spain

Abstract

Let X be a normed space and GF(X) the group of all linear surjective isometries of X that are finite-dimensional perturbations of the identity. We prove that if GF(X) acts transitively on the unit sphere then X must be an inner product space.

Bibliography

  1. H. Auerbach, Sur les groupes linéaires bornés I, Studia Math. 4 (1934), 113-127.
  2. H. Auerbach, Sur une propriété caractéristique de l'ellipsoïde, ibid. 9 (1940), 17-22.
  3. S. Banach, Théorie des opérations linéaires, Monograf. Mat. 1, Warszawa-Lwów, 1932.
  4. F. Cabello Sánchez, Regards sur le problème des rotations de Mazur, Extracta Math. 12 (1997), 97-116.
  5. F. Cabello Sánchez, Maximal symmetric norms on Banach spaces, Proc. Roy. Irish Acad., to appear.
  6. P. Greim, J. E. Jamison and A. Kamińska, Almost transitivity of some function spaces, Math. Proc. Cambridge Philos. Soc. 116 (1994), 475-488.
  7. S. Mazur, Quelques propriétés caractéristiques des espaces euclidiens, C. R. Acad. Sci. Paris 207 (1938), 761-764.
  8. S. Rolewicz, Metric Linear Spaces, Monograf. Mat. 56, PWN and D. Reidel, 1984.
Pages:
257-260
Main language of publication
English
Received
1997-12-09
Accepted
1998-07-23
Published
1999
Exact and natural sciences