ArticleOriginal scientific text
Title
On strongly asymptotically developable functions and the Borel-Ritt theorem
Authors 1, 1
Affiliations
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid, Spain c/ Prado de la Magdalena s/n
Abstract
We show that the holomorphic functions on polysectors whose derivatives remain bounded on proper subpolysectors are precisely those strongly asymptotically developable in the sense of Majima. This fact allows us to solve two Borel-Ritt type interpolation problems from a functional-analytic viewpoint.
Bibliography
- [Co] J. F. Colombeau, z A result of existence of holomorphic maps which admit a given asymptotic expansion, in: Advances in Holomorphy, J. A. Barroso (ed.), North-Holland, 1979, 221-232.
- [Ha] Y. Haraoka, Theorems of Sibuya-Malgrange type for Gevrey functions of several variables, Funkcial. Ekvac. 32 (1989), 365-388.
- [He] J. A. Hernández, Desarrollos asintóticos en polisectores. Problemas de existencia y unicidad, Ph.D. Thesis, University of Valladolid, 1994.
- [Ho] J. Horváth, Topological Vector Spaces and Distributions, Addison-Wesley, 1966.
- [Ma] H. Majima, Analogues of Cartan's decomposition theorem in asymptotic analysis, Funkcial. Ekvac. 26 (1983), 131-154.
- [Ma2] H. Majima, Asymptotic Analysis for Integrable Connections with Irregular Singular Points, Lecture Notes in Math. 1075, Springer, Berlin, 1984.
- [Ol] F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.
- [Wa] W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Dover, New York, 1987.
- [Zu] M. A. Zurro, A new Taylor type formula and
extensions for asymptotically developable functions, Studia Math. 123 (1997), 151-163.