PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1999 | 133 | 2 | 187-196
Tytuł artykułu

Toeplitz operators in the commutant of a composition operator

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
If ϕ is an analytic self-mapping of the unit disc D and if $H^2(D)$ is the Hardy-Hilbert space on D, the composition operator $C_ϕ$ on $H^{2}(D)$ is defined by $C_ϕ(f) = f∘ϕ$. In this article, we consider which Toeplitz operators $T_f$ satisfy $T_{f}C_{ϕ} = C_{ϕ}T_{f}$
Słowa kluczowe
Twórcy
autor
Bibliografia
  • [1] D. F. Behan, Commuting analytic functions without fixed points, Proc. Amer. Math. Soc. 37 (1973), 114-120.
  • [2] R. B. Burckel, Iterating analytic self-maps of discs, Amer. Math. Monthly 88 (1981), 396-407.
  • [3] B. Cload, Generating the commutant of a composition operator, in: Contemp. Math. 213, Amer. Math. Soc., 1998, 11-15.
  • [4] B. Cload, Composition operators: hyperinvariant subspaces quasi-normals and isometries, Proc. Amer. Math. Soc., to appear.
  • [5] C. C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc. 239 (1978), 1-31.
  • [6] C. C. Cowen, Commuting analytic functions, ibid. 265 (1981), 69-95.
  • [7] C. C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, 1995.
  • [8] C. C. Cowen and B. MacCluer, Some problems on composition operators, in: Contemp. Math. 213, Amer. Math. Soc., 1998, 17-25.
  • [9] P. Duren, Theory of $H^p$ Spaces, Academic Press, 1970.
  • [10] M. H. Heins, A generalization of the Aumann-Carathéodory "Starrheitssatz", Duke Math. J. 8 (1941), 312-316.
  • [11] K. Hoffman, Banach Spaces of Analytic Functions, Dover, 1988.
  • [12] P. Hurst, A model for the invertible composition operators on $H^2$, Proc. Amer. Math. Soc. 124 (1996), 1847-1856.
  • [13] E. A. Nordgren, Composition operators, Canad. J. Math. 20 (1968), 442-449.
  • [14] E. A. Nordgren, P. Rosenthal and F. S. Wintrobe, Invertible composition operators on $H^p$, J. Funct. Anal. 73 (1987), 324-344.
  • [15] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1987.
  • [16] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, New York, 1993.
  • [17] A. L. Shields, On fixed points of commuting analytic functions, Proc. Amer. Math. Soc. 15 (1964), 703-706.
  • [18] A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, in: Indiana Univ. Math. Surveys 13, Amer. Math. Soc., Providence, 1974, 49-128.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv133i2p187bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.