ArticleOriginal scientific text

Title

On Arens-Michael algebras which do not have non-zero injective ⨶-modules

Authors 1

Affiliations

  1. Faculty of Mechanics and Mathematics, Moscow State University, Moscow 119899 GSP, Russia

Abstract

A certain class of Arens-Michael algebras having no non-zero injective topological ⨶-modules is introduced. This class is rather wide and contains, in particular, algebras of holomorphic functions on polydomains in n, algebras of smooth functions on domains in n, algebras of formal power series, and, more generally, any nuclear Fréchet-Arens-Michael algebra which has a free bimodule Koszul resolution.

Bibliography

  1. S. S. Akbarov, shape The Pontryagin duality in the theory of topological modules, Funktsional. Anal. i Prilozhen. 29 (1995), no. 4, 68-72 (in Russian).
  2. R. Engelking, shape General Topology, PWN, Warszawa, 1977.
  3. J. Eschmeier and M. Putinar, shape Spectral Decompositions and Analytic Sheaves, Clarendon Press, Oxford, 1996.
  4. A. Grothendieck, shape Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
  5. A. Ya. Helemskii, shape The Homology of Banach and Topological Algebras, Moscow Univ. Press, 1986 (in Russian); English transl.: Kluwer Acad. Publ., Dordrecht, 1989.
  6. A. Ya. Helemskii, shape Banach and Polynormed Algebras: General Theory, Representations, Homology, Nauka, Moscow, 1989 (in Russian); English transl.: Oxford Univ. Press, 1993.
  7. A. Ya. Helemskii, shape 31 problems of the homology of the algebras of analysis, in: Linear and Complex Analysis: Problem Book 3, Part I, V. P. Havin and N. K. Nikolski (eds.), Lecture Notes in Math. 1573, Springer, Berlin, 1994, 54-78.
  8. MG. Köthe, shape Topological Vector Spaces II, Springer, New York, 1979.
  9. A. Yu. Pirkovskii, shape On the non-existence of cofree Fréchet modules over non-normable locally multiplicatively convex Fréchet algebras, Rocky Mountain J. Math., to appear.
  10. A. Yu. Pirkovskii, shape On the existence problem for a sufficient family of injective Fréchet modules over non-normable Fréchet algebras, Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), no. 4, 137-154 (in Russian).
  11. H. Schaefer, shape Topological Vector Spaces, Macmillan, New York, 1966.
  12. J. L. Taylor, shape Homology and cohomology for topological algebras, Adv. in Math. 9 (1972), 137-182.
  13. J. L. Taylor, shape A general framework for a multi-operator functional calculus, ibid., 183-252.
Pages:
163-174
Main language of publication
English
Received
1998-04-30
Published
1999
Exact and natural sciences