ArticleOriginal scientific text
Title
On Arens-Michael algebras which do not have non-zero injective ⨶-modules
Authors 1
Affiliations
- Faculty of Mechanics and Mathematics, Moscow State University, Moscow 119899 GSP, Russia
Abstract
A certain class of Arens-Michael algebras having no non-zero injective topological ⨶-modules is introduced. This class is rather wide and contains, in particular, algebras of holomorphic functions on polydomains in , algebras of smooth functions on domains in , algebras of formal power series, and, more generally, any nuclear Fréchet-Arens-Michael algebra which has a free bimodule Koszul resolution.
Bibliography
- S. S. Akbarov, shape The Pontryagin duality in the theory of topological modules, Funktsional. Anal. i Prilozhen. 29 (1995), no. 4, 68-72 (in Russian).
- R. Engelking, shape General Topology, PWN, Warszawa, 1977.
- J. Eschmeier and M. Putinar, shape Spectral Decompositions and Analytic Sheaves, Clarendon Press, Oxford, 1996.
- A. Grothendieck, shape Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- A. Ya. Helemskii, shape The Homology of Banach and Topological Algebras, Moscow Univ. Press, 1986 (in Russian); English transl.: Kluwer Acad. Publ., Dordrecht, 1989.
- A. Ya. Helemskii, shape Banach and Polynormed Algebras: General Theory, Representations, Homology, Nauka, Moscow, 1989 (in Russian); English transl.: Oxford Univ. Press, 1993.
- A. Ya. Helemskii, shape 31 problems of the homology of the algebras of analysis, in: Linear and Complex Analysis: Problem Book 3, Part I, V. P. Havin and N. K. Nikolski (eds.), Lecture Notes in Math. 1573, Springer, Berlin, 1994, 54-78.
- MG. Köthe, shape Topological Vector Spaces II, Springer, New York, 1979.
- A. Yu. Pirkovskii, shape On the non-existence of cofree Fréchet modules over non-normable locally multiplicatively convex Fréchet algebras, Rocky Mountain J. Math., to appear.
- A. Yu. Pirkovskii, shape On the existence problem for a sufficient family of injective Fréchet modules over non-normable Fréchet algebras, Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), no. 4, 137-154 (in Russian).
- H. Schaefer, shape Topological Vector Spaces, Macmillan, New York, 1966.
- J. L. Taylor, shape Homology and cohomology for topological algebras, Adv. in Math. 9 (1972), 137-182.
- J. L. Taylor, shape A general framework for a multi-operator functional calculus, ibid., 183-252.