PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1999 | 133 | 2 | 145-161
Tytuł artykułu

Measures and lacunary sets

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We establish new connections between some classes of lacunary sets. The main tool is the use of (p,q)-summing or weakly compact operators (for Riesz sets). This point of view provides new properties of stationary sets and allows us to generalize to more general abelian groups than the torus some properties of p-Sidon sets. We also construct some new classes of Riesz sets.
Twórcy
  • Université des sciences et techniques Lille 1, Bât. M2, F-59655 Villeneuve d'Ascq, France , lefevre@poincare.univ-artois.fr
  • Faculté Jean Perrin, Université d'Artois, Rue Jean Souvraz, BP 18, F-62307 Lens Cedex, France
Bibliografia
  • [B-E] G. Bachelis and S. Ebenstein, On Λ(p) sets, Pacific J. Math. 54 (1974), 35-38.
  • [B] R. Blei, Sidon partitions and p-Sidon sets, ibid. 65 (1976), 307-313.
  • [Bo] J. Bourgain, Une remarque sur les ensembles stationnaires, Publ. Math. Orsay, exp. 2 (1981-82).
  • [B-P] M. Bożejko and T. Pytlik, Some types of lacunary series, Colloq. Math. 25 (1972), 117-124.
  • [D-G] M. Dechamps-Gondim, Sur les compacts associés aux ensembles lacunaires, les ensembles de Sidon et quelques problèmes ouverts, Publ. Math. Orsay 84-01 (1984).
  • [D] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, 1984.
  • [D-J-T] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, 1995.
  • [F-P] J. Fournier and L. Pigno, Analytic and arithmetic properties of thin sets, Pacific J. Math. 105 (1983), 115-141.
  • [Go] G. Godefroy, On Riesz subsets of abelian discrete groups, Israel J. Math. 61 (1988), 301-331.
  • [G-S] G. Godefroy and P. Saab, Quelques espaces de Banach ayant les propriétés (V) ou (V*) de Pełczyński, C. R. Acad. Sci. Paris 303 (1986), 503-506.
  • [H-W-W] P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, 1993.
  • [He] E. Heard, A sequential F. and M. Riesz theorem, Proc. Amer. Math. Soc. 18 (1967), 832-835.
  • [K] J. P. Kahane, Some Random Series of Functions, Cambridge Stud. Adv. Math. 5, Cambridge Univ. Press, 1985.
  • [L1] P. Lefèvre, Sur les ensembles de convergence uniforme, Publ. Math. Orsay 94-24 (1994).
  • [L2] P. Lefèvre, On some properties of the class of stationary sets, Colloq. Math. 76 (1998), 1-18.
  • [L-R] J. M. López and K. A. Ross, Sidon Sets, Lecture Notes in Pure and Appl. Math. 13, Marcel Dekker, New York, 1975.
  • [L-P] F. Lust-Piquard, Propriétés harmoniques et géométriques des sous-espaces invariants par translations de $L^∞(G)$, thèse.
  • [L-P2] F. Lust-Piquard, Bohr local properties of $C_Λ(G)$, Colloq. Math. 58 (1989), 29-38.
  • [M-P] M. B. Marcus and G. Pisier, Random Fourier Series with Application to Harmonic Analysis, Ann. of Math. Stud. 101, Princeton Univ. Press, 1981.
  • [Me] Y. Meyer, Spectres des mesures et mesures absolument continues, Studia Math. 30 (1968), 87-99.
  • [P-1] G. Pisier, Sur l'espace de Banach des séries de Fourier aléatoires presque sûrement continues, in: Sém. Géométrie des Espaces de Banach, Ecole Polytechnique, 1977-78.
  • [P-2] G. Pisier, De nouvelles caractérisations des ensembles de Sidon, in: Mathematical Analysis and Applications, Adv. in Math. Suppl. Stud. 7B, Academic Press, 1981, 685-726.
  • [S-T] P. M. Soardi and G. Travaglini, On sets of completely uniform convergence, Colloq. Math. 45 (1981), 317-320.
  • [W] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math. 25, Cambridge Univ. Press, 1991.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv133i2p145bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.