ArticleOriginal scientific text

Title

A class of l1-preduals which are isomorphic to quotients of C(ωω)

Authors 1

Affiliations

  1. Department of Mathematics, Oklahoma State University, 401 Mathematical Sciences, Stillwater, Oklahoma 74078-1058, U.S.A.

Abstract

For every countable ordinal α, we construct an l1-predual Xα which is isometric to a subspace of C(ωωωα+2) and isomorphic to a quotient of C(ωω). However, Xα is not isomorphic to a subspace of C(ωωα).

Keywords

spaces of continuous functions, countable compact spaces, l1-preduals

Bibliography

  1. D. E. Alspach, A quotient of C(ωω) which is not isomorphic to a subspace of C(α), α<ω1, Israel J. Math. 33 (1980), 49-60.
  2. D. E. Alspach, A l1-predual which is not isometric to a quotient of C(α), in: Contemp. Math. 144, Amer. Math. Soc., 1993, 9-14.
  3. D. E. Alspach and Y. Benyamini, A geometrical property of C(K) spaces, Israel J. Math. 64 (1988), 179-194.
  4. Y. Benyamini, An extension theorem for separable Banach spaces, ibid. 29 (1978), 24-30.
  5. C. Bessaga and A. Pełczyński, Spaces of continuous functions IV, Studia Math. 19 (1960), 53-62.
  6. C. Bessaga and A. Pełczyński, On extreme points in separable conjugate spaces, Israel J. Math. 4 (1966), 262-264.
  7. I. Gasparis, Dissertation, The University of Texas, 1995.
  8. W. B. Johnson and M. Zippin, On subspaces of quotients of (Gn)l_p and (Gn)c_0, Israel J. Math. 13 (1972), 311-316.
  9. A. Lazar and J. Lindenstrauss, On Banach spaces whose duals are L1 spaces and their representing matrices, Acta Math. 126 (1971), 165-194.
  10. S. Mazurkiewicz et W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17-27.
  11. H. P. Rosenthal, On factors of C[0,1] with non-separable dual, Israel J. Math. 13 (1972), 361-378.
Pages:
131-143
Main language of publication
English
Received
1998-01-12
Accepted
1998-05-11
Published
1999
Exact and natural sciences