We define the concept of directional entropy for arbitrary $ℤ^2$-actions on a Lebesgue space, we examine its basic properties and consider its behaviour in the class of product actions and rigid actions.
Department of Mathematics, College of Natural Sciences, Ajou University, Suwon 441-749, Korea
Bibliografia
[1] R. M. Belinskaya, Entropy of a piecewise-power skew product, Izv. Vyssh. Uchebn. Zaved. Mat. 1974, no. 3, 12-17 (in Russian).
[2] M. Boyle and D. Lind, Expansive subdynamics, Trans. Amer. Math. Soc. 349 (1997), 55-102.
[3] J. P. Conze, Entropie d'un groupe abélien de transformations, Z. Wahrsch. Verw. Gebiete 25 (1972), 11-30.
[4] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin, 1982.
[5] I. Filipowicz, Rank, covering number and the spectral multiplicity function for $ℤ^d$-actions, thesis, Toru/n, 1996.
[6] A. A. Gura, On ergodic dynamical systems with point spectrum and commutative time, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 21 (1966), no. 4, 92-95 (in Russian).
[7] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. II, Springer, Berlin, 1970.
[8] J. Kieffer, The isomorphism theorem for generalized Bernoulli schemes, in: Studies in Probability and Ergodic Theory, Adv. Math. Suppl. Stud. 2, Academic Press, 1978, 251-267.
[9] E. Krug, Folgenentropie für abelsche Gruppen von Automorphismen, thesis, Nürnberg 1973.
[10] J. Milnor, Directional entropies of cellular automaton-maps, in: Disordered Systems and Biological Organization, NATO Adv. Sci. Inst. Ser. F 20, Springer, 1986, 113-115.
[11] J. Milnor, On the entropy geometry of cellular automata, Complex Systems 2 (1988), 357-386.
[12] D. Newton, On the entropy of certain classes of skew product transformations, Proc. Amer. Math. Soc. 21 (1969), 722-726.
[13] K. K. Park, Continuity of directional entropy for a class of $ℤ^2$-actions, J. Korean Math. Soc. 32 (1995), 573-582.
[14] K. K. Park, Entropy of a skew product with a $ℤ^2$-action, Pacific J. Math. 172 (1996), 227-241.
[15] K. K. Park, A counter-example of the entropy of a skew product, Indag. Math., to appear.
[16] K. K. Park, On directional entropy functions, Israel J. Math., to appear.
[17] P. Walters, Some invariant σ-algebras for measure preserving transformations, Trans. Amer. Math. Soc. 163 (1972), 357-368.
[18] P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv133i1p39bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.