PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1999 | 133 | 1 | 29-37
Tytuł artykułu

On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let (X,d) be a metric space. Let Φ be a family of real-valued functions defined on X. Sufficient conditions are given for an α(·)-monotone multifunction $Γ: X → 2^Φ$ to be single-valued and continuous on a weakly angle-small set. As an application it is shown that a γ-paraconvex function defined on an open convex subset of a Banach space having separable dual is Fréchet differentiable on a residual set.
Czasopismo
Rocznik
Tom
133
Numer
1
Strony
29-37
Opis fizyczny
Daty
wydano
1999
otrzymano
1998-01-12
poprawiono
1998-06-04
poprawiono
1998-09-01
Twórcy
autor
  • Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, rolewicz@impan.gov.pl
Bibliografia
  • [1] E. Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31-47.
  • [2] A. Jourani, Subdifferentiability and subdifferential monotonicity of γ-paraconvex functions, Control Cybernet. 25 (1996), 721-737.
  • [3] S. Mazur, Über konvexe Mengen in linearen normierten Räumen, Studia Math. 4 (1933), 70-84.
  • [4] D. Pallaschke and S. Rolewicz, Foundations of Mathematical Optimization, Math. Appl. 388, Kluwer, Dordrecht, 1997.
  • [5] D. Preiss and L. Zajíček, Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions, Suppl. Rend. Circ. Mat. Palermo (2) 3 (1984), 219-223.
  • [6] S. Rolewicz, On paraconvex multifunctions, in: Third Symposium on Operation Research (Mannheim, 1978), Operations Res. Verfahren 31, Hain, Königstein/Ts., 1979, 539-546.
  • [7] S. Rolewicz, On γ-paraconvex multifunctions, Math. Japon. 24 (1979), 293-300.
  • [8] S. Rolewicz, Generalization of Asplund inequalities on Lipschitz functions, Arch. Math. (Basel) 61 (1993), 484-488.
  • [9] S. Rolewicz, On an extension of Mazur's theorem on Lipschitz functions, ibid. 63 (1994), 535-540.
  • [10] S. Rolewicz, On subdifferentials on non-convex sets, in: Different Aspects of Differentiablity, D. Przeworska-Rolewicz (ed.), Dissertationes Math. 340 (1995), 301-308.
  • [11] S. Rolewicz, Convexity versus linearity, in: Transform Methods and Special Functions 94, P. Rusev, I. Dimovski and V. Kiryakova (eds.), Science Culture Technology Publ., Singapore, 1995, 253-263.
  • [12] S. Rolewicz, On Φ-differentiability of functions over metric spaces, Topol. Methods Nonlinear Anal. 5 (1995), 229-236.
  • [13] S. Rolewicz, On approximations of functions on metric spaces, Acta Univ. Lodz. Folia Math. 8 (1996), 99-108.
  • [14] I. Singer, Abstract Convex Analysis, Wiley, 1997.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv133i1p29bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.