ArticleOriginal scientific text
Title
An oscillatory singular integral operator with polynomial phase
Authors 1, 2
Affiliations
- Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003-0001, U.S.A.
- Departamento de Matemática, UFSCar, São Carlos, 13565-905 SP, Brasil
Abstract
We prove the continuity of an oscillatory singular integral operator T with polynomial phase P(x,y) on an atomic space related to the phase P. Moreover, we show that the cancellation condition to be imposed on T holds under more general conditions. To that purpose, we obtain a van der Corput type lemma with integrability at infinity.
Bibliography
- J. Alvarez and M. Milman,
continuity properties of Calderón-Zygmund operators, J. Math. Anal. Appl. 118 (1986), 63-79. - S. Chanillo and M. Christ, Weak(1,1) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-155.
- R. Coifman et Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1979).
- G. David and J. L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397.
- J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, 1985.
- D. Geller and E. M. Stein, Estimates for singular convolution operators on the Heisenberg group, Math. Ann. 267 (1984), 1-15.
- Y. Hu, Weighted
estimates for oscillatory integrals, in: Lecture Notes in Math. 1494, Springer, 1991, 73-81. - Y. Hu, Oscillatory singular integrals on weighted Hardy spaces, Studia Math. 102 (1992), 145-156.
- Y. Hu and Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces, Ark. Mat. 30 (1992), 311-320.
- Y. Pan, Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), 55-64.
- D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms, I, Acta Math. 157 (1986), 99-157.
- F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, I, J. Funct. Anal. 73 (1987), 179-194.
- E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, 1986, 307-355.