ArticleOriginal scientific text

Title

An oscillatory singular integral operator with polynomial phase

Authors 1, 2

Affiliations

  1. Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003-0001, U.S.A.
  2. Departamento de Matemática, UFSCar, São Carlos, 13565-905 SP, Brasil

Abstract

We prove the continuity of an oscillatory singular integral operator T with polynomial phase P(x,y) on an atomic space HP1 related to the phase P. Moreover, we show that the cancellation condition to be imposed on T holds under more general conditions. To that purpose, we obtain a van der Corput type lemma with integrability at infinity.

Bibliography

  1. J. Alvarez and M. Milman, Hp continuity properties of Calderón-Zygmund operators, J. Math. Anal. Appl. 118 (1986), 63-79.
  2. S. Chanillo and M. Christ, Weak(1,1) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-155.
  3. R. Coifman et Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1979).
  4. G. David and J. L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397.
  5. J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, 1985.
  6. D. Geller and E. M. Stein, Estimates for singular convolution operators on the Heisenberg group, Math. Ann. 267 (1984), 1-15.
  7. Y. Hu, Weighted Lp estimates for oscillatory integrals, in: Lecture Notes in Math. 1494, Springer, 1991, 73-81.
  8. Y. Hu, Oscillatory singular integrals on weighted Hardy spaces, Studia Math. 102 (1992), 145-156.
  9. Y. Hu and Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces, Ark. Mat. 30 (1992), 311-320.
  10. Y. Pan, Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), 55-64.
  11. D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms, I, Acta Math. 157 (1986), 99-157.
  12. F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, I, J. Funct. Anal. 73 (1987), 179-194.
  13. E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, 1986, 307-355.
Pages:
1-18
Main language of publication
English
Received
1997-05-12
Accepted
1998-07-15
Published
1999
Exact and natural sciences