Download PDF - A dichotomy on Schreier sets
ArticleOriginal scientific text
Title
A dichotomy on Schreier sets
Authors 1
Affiliations
- Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078-0613, U.S.A.
Abstract
We show that the Schreier sets have the following dichotomy property. For every hereditary collection ℱ of finite subsets of ℱ, either there exists infinite such that , or there exist infinite such that .
Bibliography
- [AA] D. Alspach and S. Argyros, Complexity of weakly null sequences, Dissertationes Math. 321 (1992).
- [AO] D. Alspach and E. Odell, Averaging weakly null sequences, Lecture Notes in Math. 1332, Springer, 1988, 126-144.
- [AD] S. Argyros and I. Deliyanni, Examples of asymptotic
Banach spaces, preprint. - [AMT] S. Argyros, S. Mercourakis and A. Tsarpalias, Convex unconditionality and summability of weakly null sequences, preprint.
- [FJ] T. Figiel and W. B. Johnson, A uniformly convex Banach space which contains no
, Compositio Math. 29 (1974), 179-190. - [KN] P. Kiriakouli and S. Negrepontis, Baire-1 functions and spreading models of
, preprint. - [OTW] E. Odell, N. Tomczak-Jaegermann and R. Wagner, Proximity to
and distortion in asymptotic spaces, preprint. - [Sch] J. Schreier, Gegenbeispiel zur Theorie der schwachen Konvergenz, Studia Math. 2 (1930), 58-62.
- [T] B. S. Tsirelson, Not every Banach space contains
or , Functional Anal. Appl. 8 (1974), 138-141.