ArticleOriginal scientific text

Title

A dichotomy on Schreier sets

Authors 1

Affiliations

  1. Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078-0613, U.S.A.

Abstract

We show that the Schreier sets Sα(α<ω1) have the following dichotomy property. For every hereditary collection ℱ of finite subsets of ℱ, either there exists infinite M=(mi)i=1 such that Sα(M)={{mi:iE}:ESα}, or there exist infinite M=(mi)i=1,N such that [N](M)={{mi:iF}:FandFN}Sα.

Bibliography

  1. [AA] D. Alspach and S. Argyros, Complexity of weakly null sequences, Dissertationes Math. 321 (1992).
  2. [AO] D. Alspach and E. Odell, Averaging weakly null sequences, Lecture Notes in Math. 1332, Springer, 1988, 126-144.
  3. [AD] S. Argyros and I. Deliyanni, Examples of asymptotic 1 Banach spaces, preprint.
  4. [AMT] S. Argyros, S. Mercourakis and A. Tsarpalias, Convex unconditionality and summability of weakly null sequences, preprint.
  5. [FJ] T. Figiel and W. B. Johnson, A uniformly convex Banach space which contains no p, Compositio Math. 29 (1974), 179-190.
  6. [KN] P. Kiriakouli and S. Negrepontis, Baire-1 functions and spreading models of 1, preprint.
  7. [OTW] E. Odell, N. Tomczak-Jaegermann and R. Wagner, Proximity to 1 and distortion in asymptotic 1 spaces, preprint.
  8. [Sch] J. Schreier, Gegenbeispiel zur Theorie der schwachen Konvergenz, Studia Math. 2 (1930), 58-62.
  9. [T] B. S. Tsirelson, Not every Banach space contains p or c0, Functional Anal. Appl. 8 (1974), 138-141.
Pages:
245-256
Main language of publication
English
Received
1997-09-08
Published
1999
Exact and natural sciences