ArticleOriginal scientific text
Title
A quasi-nilpotent operator with reflexive commutant, II
Authors 1, 2
Affiliations
- Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic
- epartment of Mathematics, Faculty of Electrical Engineering, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava, Slovak Republic
Abstract
A new example of a non-zero quasi-nilpotent operator T with reflexive commutant is presented. The norms converge to zero arbitrarily fast.
Keywords
quasinilpotent operator, commutant, reflexivity
Bibliography
- Š. Drahovský and M. Zajac, Hyperreflexive operators on finite dimensional Hilbert spaces, Math. Bohem. 118 (1993), 249-254.
- D. Hadwin and E. A. Nordgren, Reflexivity and direct sums, Acta Sci. Math. (Szeged) 55 (1991), 181-197.
- D. A. Herrero, A dense set of operators with tiny commutants, Trans. Amer. Math. Soc. 327 (1991), 159-183.
- W. R. Wogen, On cyclicity of commutants, Integral Equations Operator Theory 5 (1982), 141-143.
- M. Zajac, A quasi-nilpotent operator with reflexive commutant, Studia Math. 118 (1996), 277-283.
- M. Zajac, Rate of convergence to zero of powers of an hyper-reflexive operator, in: Proceedings of Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control (Nemecká, 1997).