ArticleOriginal scientific text

Title

On the exponential stability and dichotomy of C0-semigroups

Authors 1

Affiliations

  1. Department of Mathematics, Ohio University, Athens, Ohio 45701, U.S.A.

Abstract

A characterization of exponentially dichotomic and exponentially stable C0-semigroups in terms of solutions of an operator equation of Lyapunov type is presented. As a corollary a new and shorter proof of van Neerven's recent characterization of exponential stability in terms of boundedness of convolutions of a semigroup with almost periodic functions is given.

Bibliography

  1. W. Arendt, F. Räbiger and A. Sourour, Spectral properties of the operator equation AX+XB=Y, Quart. J. Math. Oxford Ser. (2) 45 (1994), 133-149.
  2. Ju. L. Daleckiĭ [Yu. L. Daletskiĭ] and M. G. Krein, Stability of Solutions of Differential Equations on Banach Spaces, Amer. Math. Soc., Providence, R.I., 1974.
  3. R. Datko, Extending a theorem of A. M. Liapunov to Hilbert space, J. Math. Anal. Appl. 32 (1970), 610-616.
  4. I. Erdelyi and S. W. Wang, A Local Spectral Theory for Closed Operators, London Math. Soc. Lecture Note Ser. 105, Cambridge Univ. Press, Cambridge, 1985.
  5. J. M. Freeman, The tensor product of semigroups and the operator equation SX-XT=A, J. Math. Mech. 19 (1970), 819-828.
  6. J. Goldstein, On the operator equation AX+XB=Q, Proc. Amer. Math. Soc. 78 (1978), 31-34.
  7. Yu. Latushkin and S. Montgomery-Smith, Evolutionary semigroups and Lyapunov theorems in Banach spaces, J. Funct. Anal. 127 (1995), 173-197.
  8. S. C. Lin and S. Y. Shaw, On the operator equations Ax=q and SX-XT=Q, ibid. 77 (1988), 352-363.
  9. G. Lumer and M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32-41.
  10. R. Nagel (ed.), One-Parameter Semigroups of Positive Operators, Lecture Notes in Math. 1184, Springer, Berlin, 1986.
  11. J. M. A. M. van Neerven, The Asymptotic Behavior of a Semigroup of Linear Operators, Birkhäuser, Basel, 1996.
  12. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
  13. J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc. 284 (1984), 847-857.
  14. C. R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics, Springer, New York, 1967.
  15. M. Rosenblum, On the operator equation BX-XA=Q, Duke Math. J. 23 (1956), 263-269.
  16. Vũ Quôc Phóng, The operator equation AX-XB=C with unbounded operators A and B and related abstract Cauchy problems, Math. Z. 208 (1991), 567-588.
  17. Vũ Quôc Phóng, On the spectrum, complete trajectories, and asymptotic stability of linear semidynamical systems, J. Differential Equations 105 (1993), 30-45.
Pages:
141-149
Main language of publication
English
Received
1997-12-15
Accepted
1998-06-01
Published
1999
Exact and natural sciences