ArticleOriginal scientific text

Title

On oscillatory integral operators with folding canonical relations

Authors 1, 2

Affiliations

  1. Department of Mathematics, University of Rochester, Rochester, New York 14627, U.S.A.
  2. Department of Mathematics, University of Wisconsin Madison, Wisconsin 53706, U.S.A.

Abstract

Sharp Lp estimates are proven for oscillatory integrals with phase functions Φ(x,y), (x,y) ∈ X × Y, under the assumption that the canonical relation CΦ projects to T*X and T*Y with fold singularities.

Keywords

oscillatory integrals, Fourier integral operators, fold singularities

Bibliography

  1. J. Bourgain, Estimations de certaines fonctions maximales, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 499-502.
  2. A. P. Calderón and R. Vaillancourt, A class of bounded pseudodifferential operators, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1185-1187.
  3. A. Carbery, A. Seeger, S. Wainger and J. Wright, Classes of singular integral operators along variable lines, J. Geom. Anal., to appear.
  4. M. Christ, Failure of an endpoint estimate for integrals along curves, in: Fourier Analysis and Partial Differential Equations, J. García-Cuerva, E. Hernandez, F. Soria and J. L. Torrea (eds.), Stud. Adv. Math., CRC Press, 1995, 163-168.
  5. A. Comech, Oscillatory integral operators in scattering theory, Comm. Partial Differential Equations 22 (1997), 841-867.
  6. S. Cuccagna, L2 estimates for averaging operators along curves with two-sided k-fold singularities, Duke Math. J. 89 (1997), 203-216.
  7. A. Greenleaf and A. Seeger, Fourier integral operators with fold singularities, J. Reine Angew. Math. 455 (1994), 35-56.
  8. A. Greenleaf and A. Seeger, Fourier integral operators with simple cusps, Amer. J. Math., to appear.
  9. A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudo-differential operators with singular symbols, J. Funct. Anal. 89 (1990), 202-232.
  10. L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971), 79-183.
  11. L. Hörmander, Oscillatory integrals and multipliers on FLp, Ark. Mat. 11 (1973), 1-11.
  12. R. Melrose and M. Taylor, Near peak scattering and the correct Kirchhoff approximation for a convex obstacle, Adv. Math. 55 (1985), 242-315.
  13. Y. Pan, Hardy spaces and oscillatory integral operators, Rev. Mat. Iberoamericana 7 (1991), 55-64.
  14. Y. Pan, Hardy spaces and oscillatory integral operators, II, Pacific J. Math. 168 (1995), 167-182.
  15. Y. Pan and C. D. Sogge, Oscillatory integrals associated to folding canonical relations, Colloq. Math. 61 (1990), 413-419.
  16. D. H. Phong, Singular integrals and Fourier integral operators, in: Essays on Fourier Analysis in Honor of Elias M. Stein (C. Fefferman, R. Fefferman and S. Wainger, eds.), Princeton Math. Ser. 42, Princeton Univ. Press, 1995, 286-320.
  17. D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals and Radon transforms I, Acta Math. 157 (1986), 99-157.
  18. D. H. Phong and E. M. Stein, Radon transforms and torsion, Internat. Math. Res. Notices 4 (1991), 49-60.
  19. D. H. Phong and E. M. Stein, Models of degenerate Fourier integral operators and Radon transforms, Ann. of Math. 140 (1994), 703-722.
  20. F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals I. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194.
  21. A. Seeger, Degenerate Fourier integral operators in the plane, Duke Math. J. 71 (1993), 685-745.
  22. H. Smith and C. D. Sogge, Lp regularity for the wave equation with strictly convex obstacles, Duke Math. J. 73 (1994), 97-153.
  23. E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton, N.J., 1986, 307-356.
  24. E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
  25. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.
Pages:
125-139
Main language of publication
English
Received
1997-04-11
Published
1999
Exact and natural sciences