ArticleOriginal scientific text

Title

Lower bounds for Schrödinger operators in H¹(ℝ)

Authors 1

Affiliations

  1. Département de Mathématiques, Université de Bretagne Occidentale, 6, Avenue le Georgeu, BP 809 29285 Brest, France

Abstract

We prove trace inequalities of type ||u||2_{L2}+jkj|u(aj)|2λ||u||2_{L2} where uH1(), under suitable hypotheses on the sequences {aj}j and {kj}j, with the first sequence increasing and the second bounded.

Bibliography

  1. [Al-Ge] S. Albeverio, F. Gesztesy, R. Hοegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics, Springer, Berlin, 1988.
  2. [Fe-Ph] C. Fefferman and D. H. Phong, The uncertainty principle and sharp Gårding inequalities, Comm. Pure Appl. Math. 34 (1981), 285-331.
  3. [Ga-Ol] G. V. Galunov and V. L. Oleĭnik, Analysis of the dispersion equation for a negative Dirac "comb", St. Petersburg Math. J. 4 (1993), 707-720.
  4. [Ke-Sa] R. Kerman and E. Sawyer, The trace inequality and eigenvalue estimates for Schrödinger operators, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 207-228.
  5. [Le-No] N. Lerner and J. Nourrigat, Lower bounds for pseudo-differential operators, ibid. 40 (1990), 657-682.
  6. [Pou] R. Pouliquen, Uncertainty principle and Schrödinger operators with potential localized on hypersurfaces, Preprint Univ. Bretagne Occidentale, Fasc. 5 (1997).
  7. [Re-Si] M. Reed and B. Simon, Methods of Modern Mathematical Physics II. Fourier Analysis, Self-adjointness, Academic Press, 1972.
  8. [Str] R. Strichartz, Uncertainty principles in harmonic analysis, J. Funct. Anal. 84 (1989), 97-114.
Pages:
79-89
Main language of publication
English
Received
1997-10-21
Accepted
1997-12-29
Published
1999
Exact and natural sciences