ArticleOriginal scientific text
Title
Lower bounds for Schrödinger operators in H¹(ℝ)
Authors 1
Affiliations
- Département de Mathématiques, Université de Bretagne Occidentale, 6, Avenue le Georgeu, BP 809 29285 Brest, France
Abstract
We prove trace inequalities of type where , under suitable hypotheses on the sequences and , with the first sequence increasing and the second bounded.
Bibliography
- [Al-Ge] S. Albeverio, F. Gesztesy, R. Hοegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics, Springer, Berlin, 1988.
- [Fe-Ph] C. Fefferman and D. H. Phong, The uncertainty principle and sharp Gårding inequalities, Comm. Pure Appl. Math. 34 (1981), 285-331.
- [Ga-Ol] G. V. Galunov and V. L. Oleĭnik, Analysis of the dispersion equation for a negative Dirac "comb", St. Petersburg Math. J. 4 (1993), 707-720.
- [Ke-Sa] R. Kerman and E. Sawyer, The trace inequality and eigenvalue estimates for Schrödinger operators, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 207-228.
- [Le-No] N. Lerner and J. Nourrigat, Lower bounds for pseudo-differential operators, ibid. 40 (1990), 657-682.
- [Pou] R. Pouliquen, Uncertainty principle and Schrödinger operators with potential localized on hypersurfaces, Preprint Univ. Bretagne Occidentale, Fasc. 5 (1997).
- [Re-Si] M. Reed and B. Simon, Methods of Modern Mathematical Physics II. Fourier Analysis, Self-adjointness, Academic Press, 1972.
- [Str] R. Strichartz, Uncertainty principles in harmonic analysis, J. Funct. Anal. 84 (1989), 97-114.