ArticleOriginal scientific text

Title

Strong continuity of semigroup homomorphisms

Authors 1, 1

Affiliations

  1. Department of Mathematics, Monash University, Clayton, Victoria 3168, Australia

Abstract

Let J be an abelian topological semigroup and C a subset of a Banach space X. Let L(X) be the space of bounded linear operators on X and Lip(C) the space of Lipschitz functions ⨍: C → C. We exhibit a large class of semigroups J for which every weakly continuous semigroup homomorphism T: J → L(X) is necessarily strongly continuous. Similar results are obtained for weakly continuous homomorphisms T: J → Lip(C) and for strongly measurable homomorphisms T: J → L(X).

Keywords

representation, semigroup homomorphism, weak continuity, strong continuity, Lipschitz map

Bibliography

  1. B. Basit and A. J. Pryde, Differences of vector-valued functions on topological groups, Proc. Amer. Math. Soc. 124 (1996), 1969-1975.
  2. B. Basit and A. J. Pryde, Unitary eigenvalues of semigroup homomorphisms, Monash University Analysis Paper 105, May 1997, 8 pp.
  3. J. P. R. Christensen, Joint continuity of separately continuous functions, Proc. Amer. Math. Soc. 82 (1981), 455-461.
  4. C. Datry et G. Muraz, Analyse harmonique dans les modules de Banach I: propriétés générales, Bull. Sci. Math. 119 (1995), 299-337.
  5. N. Dunford, On one parameter groups of linear transformations, Ann. of Math. 39 (1938), 569-573.
  6. J. A. Goldstein, Extremal properties of contraction semigroups on Hilbert and Banach spaces, Bull. London Math. Soc. 25 (1993), 369-376.
  7. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ. 31, Amer. Math. Soc., 1957.
  8. I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515-531.
  9. W. Rudin, Fourier Analysis on Groups, Interscience, 1967.
  10. K. Yosida, Functional Analysis, Springer, 1966.
Pages:
71-78
Main language of publication
English
Received
1997-09-16
Accepted
1998-04-28
Published
1999
Exact and natural sciences