ArticleOriginal scientific text

Title

A spectral theory for locally compact abelian groups of automorphisms of commutative Banach algebras

Authors 1, 2

Affiliations

  1. Mathematisches Institut, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 1-4, 07743 Jena, Germany
  2. Current address: Fachbereich Mathematik Universität, Rostock Universitätsplatz 1, 18055 Rostock, Germany

Abstract

Let A be a commutative Banach algebra with Gelfand space ∆ (A). Denote by Aut (A) the group of all continuous automorphisms of A. Consider a σ(A,∆(A))-continuous group representation α:G → Aut(A) of a locally compact abelian group G by automorphisms of A. For each a ∈ A and φ ∈ ∆(A), the function φa(t):=φ(αta) t ∈ G is in the space C(G) of all continuous and bounded functions on G. The weak-star spectrum σw(φa) is defined as a closed subset of the dual group Ĝ of G. For φ ∈ ∆(A) we define Ʌφa to be the union of all sets σw(φa) where a ∈ A, and Λα to be the closure of the union of all sets Ʌφa where φ ∈ ∆(A), and call Λα the unitary spectrum of α. Starting by showing that the closure of Ʌφa (for fixed φ ∈ ∆(A)) is a subsemigroup of Ĝ we characterize the structure properties of the group representation α such as norm continuity, growth and existence of non-trivial invariant subspaces through its unitary spectrum Λα. For an automorphism T of a semisimple commutative Banach algebra A we consider the group representation T: ℤ → Aut (A) defined by Tn:=Tn for all n ∈ ℤ. It is shown that ΛT=σ(T), where σ(T) is the spectrum of T and is the unit circle. From this fact we give an easy proof of the Kamowitz-Scheinberg theorem which asserts that the spectrum σ(T) either contains or is a finite union of finite subgroups of .

Keywords

automorphism, group representation, spectral analysis

Bibliography

  1. C. A. Akemann and P. A. Ostrand, The spectrum of a derivation of a*-algebra, J. London Math. Soc. 13 (1976), 525-530.
  2. W. Arveson, On group of automorphisms of operator algebras, J. Funct. Anal. 15 (1974), 217-243.
  3. A. Atzmon, On the existence of hyperinvariant subspaces, J. Operator Theory 11 (1984), 3-40.
  4. O. Bratteli, Derivations, Dissipations and Group Actions on C*-algebras, Springer, Berlin, 1986.
  5. I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon & Breach, New York, 1968.
  6. A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. 6 (1973), 133-252.
  7. A. Connes, Noncommutative Geometry, Academic Press, 1994.
  8. Y. Domar, Harmonic analysis based on certain commutative Banach algebras, Acta Math. 96 (1956), 1-66.
  9. I. Erdelyi and S.-W. Wang, A Local Spectral Theory for Closed Operators, Cambridge Univ. Press, Cambridge, 1985.
  10. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer, Berlin, 1979.
  11. S.-Z. Huang, Spectral theory for non-quasianalytic representations of locally compact abelian groups, thesis, Universität Tübingen, 1996. A complete summary is given in "Dissertation Summaries in Mathematics" 1 (1996), 171-178.
  12. B. E. Johnson, Automorphisms of commutative Banach algebras, Proc. Amer. Math. Soc. 40 (1973), 497-499.
  13. H. Kamowitz and S. Scheinberg, The spectrum of automorphisms of Banach algebras, J. Funct. Anal. 4 (1969), 268-276.
  14. Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, 1968.
  15. H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer, Berlin, 1974.
  16. R. Larsen, Banach Algebras: An Introduction, Marcel Dekker, New York, 1973.
  17. L. H. Loomis, An Introduction to Abstract Harmonic Analysis, D. van Nostrand, Toronto, 1953.
  18. R. Nagel (ed.), One-Parameter Semigroups of Positive Operators, Lecture Notes in Math. 1184, Springer, Berlin, 1986.
  19. G. K. Pedersen, C*-Algebras and Their Automorphism Groups, Academic Press, London, 1979.
  20. H. Reiter, Classical Harmonic Analysis and Locally Compact Abelian Groups, Oxford Univ. Press, Oxford, 1968.
  21. W. Rudin, Fourier Analysis on Groups, Interscience Publ., New York, 1962.
  22. S. Scheinberg, Automorphisms of commutative Banach algebras, in: Problems in Analysis, R. C. Gunning (ed.), Princeton Univ. Press, Princeton, N.J., 1971, 319-323.
  23. S. Scheinberg, The spectrum of an automorphism, Bull. Amer. Math. Soc. 78 (1972), 621-623.
  24. E. Stοrmer, Spectra of ergodic transformations, J. Funct. Anal. 15 (1974), 202-215.
  25. P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, Berlin, 1982.
Pages:
37-69
Main language of publication
English
Received
1997-04-04
Accepted
1998-03-02
Published
1999
Exact and natural sciences