ArticleOriginal scientific text
Title
On the joint spectral radius of a nilpotent Lie algebra of matrices
Authors 1
Affiliations
- Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. I 1428 Buenos Aires, República Argentina
Abstract
For a complex nilpotent finite-dimensional Lie algebra of matrices, and a Jordan-Hölder basis of it, we prove a spectral radius formula which extends a well-known result for commuting matrices.
Keywords
Taylor spectrum, joint spectral radius, nilpotent Lie algebras
Bibliography
- R. Bhatia and T. Bhattacharyya, On the joint spectral radius of commuting matrices, Studia Math. 114 (1995), 29-38.
- E. Boasso, Dual properties and joint spectra for solvable Lie algebras of operators, J. Operator Theory 33 (1995), 105-116.
- E. Boasso, Joint spectra and nilpotent Lie algebras of Linear transformations, Linear Algebra Appl. 263 (1997), 49-62.
- E. Boasso and A. Larotonda, A spectral theory for solvable Lie algebras of operators, Pacific J. Math. 158 (1993), 15-22.
- N. Bourbaki, Éléments de Mathématique, Groupes et Algèbres de Lie, Algèbres de Lie Fasc. XXVI, Hermann, 1960.
- M. Chō and T. Huruya, On the joint spectral radius, Proc. Roy. Irish Acad. Sect. A 91 (1991), 39-44.
- M. Chō and M. Takaguchi, Identity of Taylor's joint spectrum and Dash's joint spectrum, Studia Math. 70 (1982), 225-229.
- N. Jacobson, Lie Algebras, Interscience Publ., 1962.
- A. McIntosh, A. Pryde and W. Ricker, Comparison of joint spectra for certain classes of commuting opertors, Studia Math. 88 (1988), 23-36.
- C. Ott, A note on a paper of E. Boasso and A. Larotonda, Pacific J. Math. 173 (1996), 173-179.
- Z. Słodkowski, An infinite family of joint spectra, Studia Math. 61 (1973), 239-235.
- J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191.