ArticleOriginal scientific text

Title

On the joint spectral radius of a nilpotent Lie algebra of matrices

Authors 1

Affiliations

  1. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. I 1428 Buenos Aires, República Argentina

Abstract

For a complex nilpotent finite-dimensional Lie algebra of matrices, and a Jordan-Hölder basis of it, we prove a spectral radius formula which extends a well-known result for commuting matrices.

Keywords

Taylor spectrum, joint spectral radius, nilpotent Lie algebras

Bibliography

  1. R. Bhatia and T. Bhattacharyya, On the joint spectral radius of commuting matrices, Studia Math. 114 (1995), 29-38.
  2. E. Boasso, Dual properties and joint spectra for solvable Lie algebras of operators, J. Operator Theory 33 (1995), 105-116.
  3. E. Boasso, Joint spectra and nilpotent Lie algebras of Linear transformations, Linear Algebra Appl. 263 (1997), 49-62.
  4. E. Boasso and A. Larotonda, A spectral theory for solvable Lie algebras of operators, Pacific J. Math. 158 (1993), 15-22.
  5. N. Bourbaki, Éléments de Mathématique, Groupes et Algèbres de Lie, Algèbres de Lie Fasc. XXVI, Hermann, 1960.
  6. M. Chō and T. Huruya, On the joint spectral radius, Proc. Roy. Irish Acad. Sect. A 91 (1991), 39-44.
  7. M. Chō and M. Takaguchi, Identity of Taylor's joint spectrum and Dash's joint spectrum, Studia Math. 70 (1982), 225-229.
  8. N. Jacobson, Lie Algebras, Interscience Publ., 1962.
  9. A. McIntosh, A. Pryde and W. Ricker, Comparison of joint spectra for certain classes of commuting opertors, Studia Math. 88 (1988), 23-36.
  10. C. Ott, A note on a paper of E. Boasso and A. Larotonda, Pacific J. Math. 173 (1996), 173-179.
  11. Z. Słodkowski, An infinite family of joint spectra, Studia Math. 61 (1973), 239-235.
  12. J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191.
Pages:
15-27
Main language of publication
English
Received
1997-06-27
Accepted
1998-04-20
Published
1999
Exact and natural sciences