ArticleOriginal scientific text

Title

Riesz means of Fourier transforms and Fourier series on Hardy spaces

Authors 1

Affiliations

  1. Department of Numerical Analysis, Eötvös L. University, Múzeum krt. 6-8, H-1088 Budapest, Hungary

Abstract

Elementary estimates for the Riesz kernel and for its derivative are given. Using these we show that the maximal operator of the Riesz means of a tempered distribution is bounded from Hp() to Lp() (1/(α+1) < p < ∞) and is of weak type (1,1), where Hp() is the classical Hardy space. As a consequence we deduce that the Riesz means of a function L1() converge a.e. to ⨍. Moreover, we prove that the Riesz means are uniformly bounded on Hp() whenever 1/(α+1) < p < ∞. Thus, in case Hp(), the Riesz means converge to ⨍ in Hp() norm (1/(α+1) < p < ∞). The same results are proved for the conjugate Riesz means and for Fourier series of distributions.

Keywords

Hardy spaces, p-atom, atomic decomposition, interpolation, Fourier transforms, Riesz means

Bibliography

  1. C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, New York, 1988.
  2. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.
  3. D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class Hp, Trans. Amer. Math. Soc. 157 (1971), 137-153.
  4. P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Birkhäuser, Basel, 1971.
  5. C. Fefferman, N. M. Rivière and Y. Sagher, Interpolation between Hp spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81.
  6. C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-193.
  7. B. S. Kashin and A. A. Saakjan, Orthogonal Series, Transl. Math. Monographs 75, Amer. Math. Soc., 1989.
  8. J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132.
  9. F. Móricz, The maximal Fejér operator on the spaces H1 and L1, in: Approximation Theory and Function Series (Budapest, 1995), Bolyai Soc. Math. Stud. 5, Budapest, 1996, 275-292.
  10. N. M. Rivière and Y. Sagher, Interpolation between L and H1, the real method, J. Funct. Anal. 14 (1973), 401-409.
  11. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
  12. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.
  13. F. Weisz, Cesàro summability of one- and two-dimensional trigonometric-Fourier series, Colloq. Math. 74 (1997), 123-133.
  14. F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
  15. F. Weisz, The maximal Fejér operator of Fourier transforms on Hardy spaces, Acta Sci. Math. (Szeged), to appear.
  16. N. Wiener, The Fourier Integral and Certain of Its Applications, Dover, New York, 1959.
  17. A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959.
Pages:
253-270
Main language of publication
English
Received
1997-09-17
Published
1998
Exact and natural sciences