ArticleOriginal scientific text
Title
Riesz means of Fourier transforms and Fourier series on Hardy spaces
Authors 1
Affiliations
- Department of Numerical Analysis, Eötvös L. University, Múzeum krt. 6-8, H-1088 Budapest, Hungary
Abstract
Elementary estimates for the Riesz kernel and for its derivative are given. Using these we show that the maximal operator of the Riesz means of a tempered distribution is bounded from to (1/(α+1) < p < ∞) and is of weak type (1,1), where is the classical Hardy space. As a consequence we deduce that the Riesz means of a function converge a.e. to ⨍. Moreover, we prove that the Riesz means are uniformly bounded on whenever 1/(α+1) < p < ∞. Thus, in case , the Riesz means converge to ⨍ in norm (1/(α+1) < p < ∞). The same results are proved for the conjugate Riesz means and for Fourier series of distributions.
Keywords
Hardy spaces, p-atom, atomic decomposition, interpolation, Fourier transforms, Riesz means
Bibliography
- C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, New York, 1988.
- J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.
- D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class
, Trans. Amer. Math. Soc. 157 (1971), 137-153. - P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Birkhäuser, Basel, 1971.
- C. Fefferman, N. M. Rivière and Y. Sagher, Interpolation between
spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81. - C. Fefferman and E. M. Stein,
spaces of several variables, Acta Math. 129 (1972), 137-193. - B. S. Kashin and A. A. Saakjan, Orthogonal Series, Transl. Math. Monographs 75, Amer. Math. Soc., 1989.
- J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132.
- F. Móricz, The maximal Fejér operator on the spaces
and , in: Approximation Theory and Function Series (Budapest, 1995), Bolyai Soc. Math. Stud. 5, Budapest, 1996, 275-292. - N. M. Rivière and Y. Sagher, Interpolation between
and , the real method, J. Funct. Anal. 14 (1973), 401-409. - E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
- E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.
- F. Weisz, Cesàro summability of one- and two-dimensional trigonometric-Fourier series, Colloq. Math. 74 (1997), 123-133.
- F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
- F. Weisz, The maximal Fejér operator of Fourier transforms on Hardy spaces, Acta Sci. Math. (Szeged), to appear.
- N. Wiener, The Fourier Integral and Certain of Its Applications, Dover, New York, 1959.
- A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959.