ArticleOriginal scientific text

Title

Lq-spectrum of the Bernoulli convolution associated with the golden ratio

Authors 1, 2, 3

Affiliations

  1. Department of Mathematics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
  2. Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.
  3. Department of Mathematics, Cornell University, Ithaca, New York 14853 U.S.A.

Abstract

Based on a set of higher order self-similar identities for the Bernoulli convolution measure for (√5-1)/2 given by Strichartz et al., we derive a formula for the Lq-spectrum, q >0, of the measure. This formula is the first obtained in the case where the open set condition does not hold.

Keywords

Bernoulli convolution, golden ratio, multifractal measure, Lq-spectrum, Lq-dimension, Hausdorff dimension, renewal equation, self-similarity

Bibliography

  1. [AY] J. C. Alexander and J. A. Yorke, Fat baker's transformations, Ergodic Theory Dynam. Systems 4 (1984), 1-23.
  2. [AZ] J. C. Alexander and D. Zagier, The entropy of a certain infinitely convolved Bernoulli measure, J. London Math. Soc. 44 (1991), 121-134.
  3. [CM] R. Cawley and R. D. Mauldin, Multifractal decompositions of Moran fractals, Adv. Math. 92 (1992), 196-236.
  4. [CLP] P. Collet, J. L. Lebowitz and A. Porzio, The dimension spectrum of some dynamical systems, J. Statist. Phys. 47 (1987), 609-644.
  5. [DL] I. Daubechies and J. Lagarias, On the thermodynamic formalism for multifractal functions, Rev. Math. Phys. 6 (1994), 1033-1070.
  6. [EM] G. A. Edgar and R. D. Mauldin, Multifractal decompositions of digraph recursive fractals, Proc. London Math. Soc. 65 (1992), 604-628.
  7. [E] P. Erdős, On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61 (1939), 974-976.
  8. [F] K. J. Falconer, Fractal Geometry-Mathematical Foundations and Applications, Wiley, New York, 1990.
  9. [Fe] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, 2nd ed., Wiley, New York, 1971.
  10. [FP] U. Frisch and G. Parisi, On the singularity structure of fully developed turbulence, in: Proc. Internat. School Phys., "Enrico Fermi" Course LXXXVIII, North-Holland, Amsterdam, 1985, 84-88.
  11. [G] A. M. Garsia, Entropy and singularity of infinite convolutions, Pacific J. Math. 13 (1963), 1159-1169.
  12. [H] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia and B. I. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A 33 (1986), 1141-1151.
  13. [Hu] T. Y. Hu, The local dimensions of the Bernoulli convolution associated with the golden number, Trans. Amer. Math. Soc. 349 (1997), 2917-2940.
  14. [Hut] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747.
  15. [La] S. P. Lalley, Random series in powers of algebraic integers: Hausdorff dimension of the limit distribution, J. London Math. Soc., to appear.
  16. [L1] K.-S. Lau, Fractal measures and mean p-variations, J. Funct. Anal. 108 (1992), 427-457.
  17. [L2] K.-S. Lau, Dimension of a family of singular Bernoulli convolutions, ibid. 116 (1993), 335-358.
  18. [LN1] K.-S. Lau and S.-M. Ngai, Multifractal measures and a weak separation condition, Adv. Math., to appear.
  19. [LN2] K.-S. Lau and S.-M. Ngai, Lq-spectrum of Bernoulli convolutions associated with P.V. numbers, preprint.
  20. [LW] K.-S. Lau and J. Wang, Mean quadratic variations and Fourier asymptotics of self-similar measures, Monatsh. Math. 115 (1993), 99-132.
  21. [LP] F. Ledrappier and A. Porzio, A dimension formula for Bernoulli convolution, J. Statist. Phys. 76 (1994), 1307-1327.
  22. [Lo] A. O. Lopes, The dimension spectrum of the maximal measure, SIAM J. Math. Anal. 20 (1989), 1243-1254.
  23. [N] S.-M. Ngai, A dimension result arising from the Lq-spectrum of a measure, Proc. Amer. Math. Soc. 125 (1997), 2943-2951.
  24. [O] L. Olsen, A multifractal formalism, Adv. Math. 116 (1995), 82-195.
  25. [PU] F. Przytycki and M. Urbański, On the Hausdorff dimension of some fractal sets, Studia Math. 93 (1989), 155-186.
  26. [R] D. Rand, The singularity spectrum f(α) for cookie-cutters, Ergodic Theory Dynam. Systems 9 (1989), 527-541.
  27. [Ré] A. Rényi, Probability Theory, North-Holland, 1970.
  28. [Ri] R. Riedi, An improved multifractal formalism and self-similar measures, J. Math. Anal. Appl. 189 (1995), 462-490.
  29. [S] R. Salem, Algebraic Numbers and Fourier Transformations, Heath Math. Monographs, Boston, 1962.
  30. [Se] E. Seneta, Non-negative Matrices, Wiley, New York, 1973.
  31. [So] B. Solomyak, On the random series ±λn (an Erdős problem), Ann. of Math. 142 (1995), 611-625.
  32. [St] R. S. Strichartz, Self-similar measures and their Fourier transforms III, Indiana Univ. Math. J. 42 (1993), 367-411.
  33. [STZ] R. S. Strichartz, A. Taylor and T. Zhang, Densities of self-similar measures on the line, Experiment. Math. 4 (1995), 101-128.
Pages:
225-251
Main language of publication
English
Received
1997-07-16
Accepted
1998-04-15
Published
1998
Exact and natural sciences