ArticleOriginal scientific text

Title

Injective semigroup-algebras

Authors 1

Affiliations

  1. 162 Nottingham St., Pitsmoor, Sheffield, UK

Abstract

Semigroups S for which the Banach algebra 1(S) is injective are investigated and an application to the work of O. Yu. Aristov is described.

Bibliography

  1. O. Yu. Aristov, Characterization of strict C*-algebras, Studia Math. 112 (1994), 51-58.
  2. J. W. Baker and A. Rejali, On the Arens regularity of weighted convolution algebras, J. London Math. Soc. (2) 40 (1989), 535-546.
  3. F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973.
  4. P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870.
  5. A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland, Amsterdam, 1993.
  6. I. N. Herstein, Non-commutative Rings, Math. Assoc. of America, Washington, 1968.
  7. J. M. Howie, An Introduction to Semigroup Theory, Academic Press, London, 1976.
  8. B. E. Johnson, Near inclusions for subhomogeneous C*-algebras, Proc. London Math. Soc. (3) 68 (1994), 399-422.
  9. L. Mirsky, Transversal Theory, Academic Press, London, 1971.
  10. T. W. Palmer, Banach Algebras and the General Theory of *-algebras, Cambridge Univ. Press, Cambridge, 1994.
  11. J. S. Pym, Convolution measure algebras are not usually Arens-regular, Quart. J. Math. Oxford Ser. (2) 25 (1974), 235-240.
  12. N. Th. Varopoulos, Some remarks on Q-algebras, Ann. Inst. Fourier (Grenoble) 22 (1972), 1-11.
  13. N. J. Young, Semigroup algebras having regular multiplication, Studia Math. 47 (1973), 191-196.
Pages:
215-224
Main language of publication
English
Received
1997-07-14
Published
1998
Exact and natural sciences