PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1998 | 131 | 3 | 205-214
Tytuł artykułu

The higher order Riesz transform for Gaussian measure need not be of weak type (1,1)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to prove that the higher order Riesz transform for Gaussian measure associated with the Ornstein-Uhlenbeck differential operator $L:= d^2/dx^2 - 2xd/dx$, x ∈ ℝ, need not be of weak type (1,1). A function in $L^1(dγ)$, where dγ is the Gaussian measure, is given such that the distribution function of the higher order Riesz transform decays more slowly than C/λ.
Twórcy
  • Departamento de Matemáticas, Universidad Autónoma de Madrid, Ciudad Universitaria de Canto Blanco, 28049 Madrid, Spain , scotto@ciunsa.unsa.edu.ar
  • Current adress: Departamento de Matemáticas, Facultad de Ciencias Exactas, Universidad Nacional Salta, Bs. As. 177, 4400 Salta, Argentina
Bibliografia
  • [F-G-S] Fabes, E., Gutiérrez, C. and Scotto, R., Weak-type estimates for the Riesz transforms associated with the Gaussian measure, Rev. Mat. Iberoamericana 10 (1994), 229-281.
  • [G] Gutiérrez, C., On the Riesz transforms for the Gaussian measure, J. Funct. Anal. 120 (1994), 107-134.
  • [G-S-T] Gutiérrez, C., Segovia, C. and J. L. Torrea, On higher Riesz transforms for Gaussian measures, J. Fourier Anal. Appl. 2 (1996), 583-596.
  • [M] Muckenhoupt, B., Hermite conjugate expansions, Trans. Amer. Math. Soc. 139 (1969), 243-260.
  • [Sc] Scotto, R., Weak type stimates for singular integral operators associated with the Ornstein-Uhlenbeck process, PhD thesis, University of Minnesota.
  • [Sj] Sjögren, P., On the maximal functions for the Mehler kernel, in: Lecture Notes in Math. 992, Springer, 1983, 73-82.
  • [U] Urbina, W., On singular integrals with respect to the Gaussian measure, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 531-567.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv131i3p205bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.