Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The authors obtain some multiplier theorems on $H^p$ spaces analogous to the classical $L^p$ multiplier theorems of de Leeuw. The main result is that a multiplier operator $(Tf)^(x) = λ(x)f̂(x)$ $(λ ∈ C(ℝ^n))$ is bounded on $H^p(ℝ^n)$ if and only if the restriction ${λ(εm)}_{m∈Λ}$ is an $H^p(T^n)$ bounded multiplier uniformly for ε>0, where Λ is the integer lattice in $ℝ^n$.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
189-204
Opis fizyczny
Daty
wydano
1998
otrzymano
1998-04-17
Twórcy
autor
- Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, U.S.A.
autor
- Department of Mathematical Sciences University of Wisconsin-Milwaukee Milwaukee, Wisconsin 53201, U.S.A., fan@csd.uwm.edu
Bibliografia
- [1] P. Auscher and M. J. Carro, On relations between operators on $ℝ^n$, $T^n$ and $ℤ^n$, Studia Math. 101 (1990), 165-182.
- [2] D. Chen, Multipliers on certain function spaces, Ph.D. thesis, Univ. of Wisconsin-Milwaukee, 1998.
- [3] D. Fan, Hardy spaces on compact Lie groups, Ph.D. thesis, Washington University, St. Louis, 1990.
- [4] C. Fefferman and E. M. Stein, $H^p$ spaces of several variables, Acta Math. 129 (1972), 137-193.
- [5] D. Goldberg, A local version of real Hardy spaces, ibid. 46 (1979), 27-42.
- [6] C. Kenig and P. Thomas, Maximal operators defined by Fourier multipliers, Studia Math. 68 (1980), 79-83.
- [7] S. Krantz, Fractional integration on Hardy spaces, ibid. 73 (1982), 87-94.
- [8] K. de Leeuw, On $L_p$ multipliers, Ann. of Math. 91 (1965), 364-379.
- [9] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv131i2p189bwm