ArticleOriginal scientific textMultiplier transformations on
Title
Multiplier transformations on spaces
Authors 1, 2
Affiliations
- Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, U.S.A.
- Department of Mathematical Sciences University of Wisconsin-Milwaukee Milwaukee, Wisconsin 53201, U.S.A.
Abstract
The authors obtain some multiplier theorems on spaces analogous to the classical multiplier theorems of de Leeuw. The main result is that a multiplier operator is bounded on if and only if the restriction is an bounded multiplier uniformly for ε>0, where Λ is the integer lattice in .
Bibliography
- P. Auscher and M. J. Carro, On relations between operators on
, and , Studia Math. 101 (1990), 165-182. - D. Chen, Multipliers on certain function spaces, Ph.D. thesis, Univ. of Wisconsin-Milwaukee, 1998.
- D. Fan, Hardy spaces on compact Lie groups, Ph.D. thesis, Washington University, St. Louis, 1990.
- C. Fefferman and E. M. Stein,
spaces of several variables, Acta Math. 129 (1972), 137-193. - D. Goldberg, A local version of real Hardy spaces, ibid. 46 (1979), 27-42.
- C. Kenig and P. Thomas, Maximal operators defined by Fourier multipliers, Studia Math. 68 (1980), 79-83.
- S. Krantz, Fractional integration on Hardy spaces, ibid. 73 (1982), 87-94.
- K. de Leeuw, On
multipliers, Ann. of Math. 91 (1965), 364-379. - E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.