ArticleOriginal scientific text
Title
The uniform zero-two law for positive operators in Banach lattices
Authors 1
Affiliations
- Department of Mathematics and Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Abstract
Let T be a positive power-bounded operator on a Banach lattice. We prove:
(i) If , then there is a k ≥ 1 such that lim_{n→∞} ||T^n(I-T)|| = 0 inf_n ||T^n(I-T)|| < √3!$!.
Bibliography
- [AR] G. R. Allan and T. J. Ransford, Power-dominated elements in Banach algebras, Studia Math. 94 (1989), 63-79.
- [B] D. Berend, A note on the
analogue of the "zero-two" law, Proc. Amer. Math. Soc. 114 (1992), 95-97. - [F] S. R. Foguel, More on the "zero-two" law, ibid. 61 (1976), 262-264.
- [FWe] S. R. Foguel and B. Weiss, On convex power series of a conservative Markov operator, ibid. 38 (1973), 325-330.
- [KT] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 312-328.
- [M] J. Martinez, A representation lattice isomorphism for the peripheral spectrum, Proc. Amer. Math. Soc. 119 (1993), 489-492.
- [OSu] D. Ornstein and L. Sucheston, An operator theorem on
convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631-1639. - [S1] H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin, 1974.
- [S2] H. Schaefer, The zero-two law for positive contractions is valid in all Banach lattices, Israel J. Math. 59 (1987), 241-244.
- [Sc] A. Schep, A remark on the uniform zero-two law for positive contractions, Arch. Math. (Basel) 53 (1989), 493-496.
- [W1] R. Wittmann, Analogues of the zero-two law for positive contractions in
and C(X), Israel J. Math. 59 (1987), 8-28. - [W2]] R. Wittmann, Ein starkes ``Null-Zwei"-Gesetz in
, Math. Z. 197 (1988), 223-229. - [Z1] R. Zaharopol, The modulus of a regular operator and the "zero-two" law in
-spaces (1 < p < ∞, p ≠ 2), J. Funct. Anal. 68 (1986), 300-312. - [Z2] R. Zaharopol, Uniform monotonicity of norms and the strong "zero-two" law, J. Math. Anal. Appl. 139 (1989), 217-225.
- [Ze] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 369-385.