ArticleOriginal scientific text

Title

The uniform zero-two law for positive operators in Banach lattices

Authors 1

Affiliations

  1. Department of Mathematics and Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract

Let T be a positive power-bounded operator on a Banach lattice. We prove: (i) If fn||Tn(I-T)||<2, then there is a k ≥ 1 such that limn||Tn(I-Tk)||=0.(ii)lim_{n→∞} ||T^n(I-T)|| = 0if(andonlyif)inf_n ||T^n(I-T)|| < √3!$!.

Bibliography

  1. [AR] G. R. Allan and T. J. Ransford, Power-dominated elements in Banach algebras, Studia Math. 94 (1989), 63-79.
  2. [B] D. Berend, A note on the Lp analogue of the "zero-two" law, Proc. Amer. Math. Soc. 114 (1992), 95-97.
  3. [F] S. R. Foguel, More on the "zero-two" law, ibid. 61 (1976), 262-264.
  4. [FWe] S. R. Foguel and B. Weiss, On convex power series of a conservative Markov operator, ibid. 38 (1973), 325-330.
  5. [KT] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 312-328.
  6. [M] J. Martinez, A representation lattice isomorphism for the peripheral spectrum, Proc. Amer. Math. Soc. 119 (1993), 489-492.
  7. [OSu] D. Ornstein and L. Sucheston, An operator theorem on L1 convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631-1639.
  8. [S1] H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin, 1974.
  9. [S2] H. Schaefer, The zero-two law for positive contractions is valid in all Banach lattices, Israel J. Math. 59 (1987), 241-244.
  10. [Sc] A. Schep, A remark on the uniform zero-two law for positive contractions, Arch. Math. (Basel) 53 (1989), 493-496.
  11. [W1] R. Wittmann, Analogues of the zero-two law for positive contractions in Lp and C(X), Israel J. Math. 59 (1987), 8-28.
  12. [W2]] R. Wittmann, Ein starkes ``Null-Zwei"-Gesetz in Lp, Math. Z. 197 (1988), 223-229.
  13. [Z1] R. Zaharopol, The modulus of a regular operator and the "zero-two" law in Lp-spaces (1 < p < ∞, p ≠ 2), J. Funct. Anal. 68 (1986), 300-312.
  14. [Z2] R. Zaharopol, Uniform monotonicity of norms and the strong "zero-two" law, J. Math. Anal. Appl. 139 (1989), 217-225.
  15. [Ze] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 369-385.
Pages:
149-153
Main language of publication
English
Received
1997-08-27
Published
1998
Exact and natural sciences