ArticleOriginal scientific text
Title
Fragmentability and compactness in C(K)-spaces
Authors 1, 2, 1
Affiliations
- Departamento de Matemticas, Facultad de Matemticas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain
- Departamento de Matemáticas, Escuela Universitaria Politécnica, Avenida de España s/n, Campus Universitario, 02071 Albacete, Spain
Abstract
Let K be a compact Hausdorff space, the space of continuous functions on K endowed with the pointwise convergence topology, D ⊂ K a dense subset and the topology in C(K) of pointwise convergence on D. It is proved that when is Lindelöf the -compact subsets of C(K) are fragmented by the supremum norm of C(K). As a consequence we obtain some Namioka type results and apply them to prove that if K is separable and is Lindelöf, then K is metrizable if, and only if, there is a countable and dense subset D ⊂ K such that is analytic. We also show that if K is a separable Rosenthal compact space, then K is metrizable if, and only if, is Lindelöf. We complete our study by showing that if K does not contain a copy of βℕ, then convex -compact subsets of C(K) have the weak Radon-Nikodym property.
Keywords
pointwise compactness, Radon-Nikodym compact spaces, fragmentability
Bibliography
- J. Aarts and D. Lutzer, Completeness properties designed for recognizing Baire spaces, Dissertationes Math. 116 (1974).
- A. Alexiewicz and W. Orlicz, Sur la continuité et classification de Baire des fonctions abstraites, Fund. Math. 35 (1948), 105-126.
- K. Alster and R. Pol, On function spaces of compact subspaces of Σ-products of the real line, ibid. 107 (1980), 135-143.
- A. V. Arkhangel'skiĭ, A survey of
-theory, Questions Answers Gen. Topology 5 (1987), 1-109 (special issue). - A. V. Arkhangel'skiĭ,
-theory, in: M. Hušek and J. van Mill (eds.), Recent Progress in General Topology (Prague, 1991), North-Holland, 1992, 1-56. - A. V. Arkhangel'skiĭ and V. I. Ponomarev, Fundamentals of General Topology, Reidel, 1984.
- J. Bourgain, D. Fremlin and M. Talagrand, Pointwise compact sets of Baire measurable functions, Amer. J. Math. 100 (1978), 845-886.
- R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Lecture Notes in Math. 993, Springer, 1983.
- A. Bouziad, Notes sur la propriété de Namioka, Trans. Amer. Math. Soc. 344 (1994), 873-883.
- A. Bouziad, Every Čech-analytic Baire semitopological group is a topological group, Proc. Amer. Math. Soc. 124 (1996), 953-959.
- B. Cascales, G. Manjabacas and G. Vera, A Krein-Smulian type result in Banach spaces, Quart. J. Math. Oxford 48 (1997), 161-167.
- B. Cascales and G. Vera, Topologies weaker than the weak topology of a Banach space, J. Math. Anal. Appl. 182 (1994), 41-68.
- G. A. Edgar, Measurability in a Banach space I, Indiana Univ. Math. J. 26 (1977), 663-677.
- R. Engelking, General Topology, PWN-Polish Sci. Publ., 1977.
- G. Godefroy, Compacts de Rosenthal, Pacific J. Math. 91 (1980), 293-306.
- G. Godefroy et M. Talagrand, Espaces de Banach représentables, Israel J. Math. 41 (1982), 321-330.
- R. Haydon, On Banach spaces which contain
and types of measures on compact spaces, Israel J. Math. 28 (1977), 313-324. - J. E. Jayne, I. Namioka and C. A. Rogers, Norm fragmented weak* compact sets, Collect. Math. 41 (1990), 133-163.
- J. E. Jayne, I. Namioka and C. A. Rogers, Topological properties of Banach spaces, Proc. London Math. Soc. 66 (1993), 651-672.
- J. E. Jayne and C. A. Rogers, Borel selectors for upper semi-continuous set-valued maps, Acta Math. 155 (1985), 41-79.
- H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Grundlehren Math. Wiss. 208, Springer, Berlin, 1974.
- W. Moran, Measures on metacompact spaces, Proc. London Math. Soc. 20 (1970), 507-524.
- I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515-531.
- I. Namioka, Radon-Nikodým compact spaces and fragmentability, Mathematika 34 (1989), 258-281.
- H. P. Rosenthal, A characterization of Banach spaces containing
, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413. - C. Stegall, Functions of the first Baire class, Proc. Amer. Math. Soc. 111 (1991), 981-991.
- M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. of Math. 110 (1979), 407-438.
- M. Talagrand, Sur les mesures vectorielles définies par une application Pettis-intégrable, Bull. Soc. Math. France 108 (1980), 475-483.
- M. Talagrand, Sur les espaces de Banach contenant
, Israel J. Math. 40 (1981), 324-330. - M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 (1984).
- F. Topsoe and J. Hoffmann-Jorgensen, Analytic sets, chapter in: Analytic Spaces and Their Applications (Part 3), Academic Press, 1980, 317-398.
- S. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Transl. 48 (1965), 161-228.
- G. Vera, Pointwise compactness and continuity of the integral, Rev. Mat. Univ. Complut. Madrid 9 (1996), 221-245 (special issue).