ArticleOriginal scientific text

Title

Fragmentability and compactness in C(K)-spaces

Authors 1, 2, 1

Affiliations

  1. Departamento de Matemticas, Facultad de Matemticas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain
  2. Departamento de Matemáticas, Escuela Universitaria Politécnica, Avenida de España s/n, Campus Universitario, 02071 Albacete, Spain

Abstract

Let K be a compact Hausdorff space, Cp(K) the space of continuous functions on K endowed with the pointwise convergence topology, D ⊂ K a dense subset and tp(D) the topology in C(K) of pointwise convergence on D. It is proved that when Cp(K) is Lindelöf the tp(D)-compact subsets of C(K) are fragmented by the supremum norm of C(K). As a consequence we obtain some Namioka type results and apply them to prove that if K is separable and Cp(K) is Lindelöf, then K is metrizable if, and only if, there is a countable and dense subset D ⊂ K such that (C(K),tp(D)) is analytic. We also show that if K is a separable Rosenthal compact space, then K is metrizable if, and only if, Cp(K) is Lindelöf. We complete our study by showing that if K does not contain a copy of βℕ, then convex tp(D)-compact subsets of C(K) have the weak Radon-Nikodym property.

Keywords

pointwise compactness, Radon-Nikodym compact spaces, fragmentability

Bibliography

  1. J. Aarts and D. Lutzer, Completeness properties designed for recognizing Baire spaces, Dissertationes Math. 116 (1974).
  2. A. Alexiewicz and W. Orlicz, Sur la continuité et classification de Baire des fonctions abstraites, Fund. Math. 35 (1948), 105-126.
  3. K. Alster and R. Pol, On function spaces of compact subspaces of Σ-products of the real line, ibid. 107 (1980), 135-143.
  4. A. V. Arkhangel'skiĭ, A survey of Cp-theory, Questions Answers Gen. Topology 5 (1987), 1-109 (special issue).
  5. A. V. Arkhangel'skiĭ, Cp-theory, in: M. Hušek and J. van Mill (eds.), Recent Progress in General Topology (Prague, 1991), North-Holland, 1992, 1-56.
  6. A. V. Arkhangel'skiĭ and V. I. Ponomarev, Fundamentals of General Topology, Reidel, 1984.
  7. J. Bourgain, D. Fremlin and M. Talagrand, Pointwise compact sets of Baire measurable functions, Amer. J. Math. 100 (1978), 845-886.
  8. R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Lecture Notes in Math. 993, Springer, 1983.
  9. A. Bouziad, Notes sur la propriété de Namioka, Trans. Amer. Math. Soc. 344 (1994), 873-883.
  10. A. Bouziad, Every Čech-analytic Baire semitopological group is a topological group, Proc. Amer. Math. Soc. 124 (1996), 953-959.
  11. B. Cascales, G. Manjabacas and G. Vera, A Krein-Smulian type result in Banach spaces, Quart. J. Math. Oxford 48 (1997), 161-167.
  12. B. Cascales and G. Vera, Topologies weaker than the weak topology of a Banach space, J. Math. Anal. Appl. 182 (1994), 41-68.
  13. G. A. Edgar, Measurability in a Banach space I, Indiana Univ. Math. J. 26 (1977), 663-677.
  14. R. Engelking, General Topology, PWN-Polish Sci. Publ., 1977.
  15. G. Godefroy, Compacts de Rosenthal, Pacific J. Math. 91 (1980), 293-306.
  16. G. Godefroy et M. Talagrand, Espaces de Banach représentables, Israel J. Math. 41 (1982), 321-330.
  17. R. Haydon, On Banach spaces which contain 1(τ) and types of measures on compact spaces, Israel J. Math. 28 (1977), 313-324.
  18. J. E. Jayne, I. Namioka and C. A. Rogers, Norm fragmented weak* compact sets, Collect. Math. 41 (1990), 133-163.
  19. J. E. Jayne, I. Namioka and C. A. Rogers, Topological properties of Banach spaces, Proc. London Math. Soc. 66 (1993), 651-672.
  20. J. E. Jayne and C. A. Rogers, Borel selectors for upper semi-continuous set-valued maps, Acta Math. 155 (1985), 41-79.
  21. H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Grundlehren Math. Wiss. 208, Springer, Berlin, 1974.
  22. W. Moran, Measures on metacompact spaces, Proc. London Math. Soc. 20 (1970), 507-524.
  23. I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515-531.
  24. I. Namioka, Radon-Nikodým compact spaces and fragmentability, Mathematika 34 (1989), 258-281.
  25. H. P. Rosenthal, A characterization of Banach spaces containing 1, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413.
  26. C. Stegall, Functions of the first Baire class, Proc. Amer. Math. Soc. 111 (1991), 981-991.
  27. M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. of Math. 110 (1979), 407-438.
  28. M. Talagrand, Sur les mesures vectorielles définies par une application Pettis-intégrable, Bull. Soc. Math. France 108 (1980), 475-483.
  29. M. Talagrand, Sur les espaces de Banach contenant 1(τ), Israel J. Math. 40 (1981), 324-330.
  30. M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 (1984).
  31. F. Topsoe and J. Hoffmann-Jorgensen, Analytic sets, chapter in: Analytic Spaces and Their Applications (Part 3), Academic Press, 1980, 317-398.
  32. S. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Transl. 48 (1965), 161-228.
  33. G. Vera, Pointwise compactness and continuity of the integral, Rev. Mat. Univ. Complut. Madrid 9 (1996), 221-245 (special issue).
Pages:
73-87
Main language of publication
English
Received
1997-11-03
Accepted
1998-02-19
Published
1998
Exact and natural sciences