ArticleOriginal scientific text

Title

On operators satisfying the Rockland condition

Authors 1, 2

Affiliations

  1. Institute of Mathematics, Wrocław University, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
  2. Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland

Abstract

Let G be a homogeneous Lie group. We prove that for every closed, homogeneous subset Γ of G* which is invariant under the coadjoint action, there exists a regular kernel P such that P goes to 0 in any representation from Γ and P satisfies the Rockland condition outside Γ. We prove a subelliptic estimate as an application.

Bibliography

  1. I. D. Brown, Dual topology of a nilpotent Lie group, Ann. Sci. École Norm. Sup. 6 (1973), 407-411.
  2. M. Christ, D. Geller, P. Głowacki and L. Pollin, Pseudodifferential operators on groups with dilations, Duke Math. J. 68 (1992), 31-65.
  3. R. Coifman et G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
  4. R. Coifman et G. Weiss, Transference Methods in Analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., Providence, 1977.
  5. J. Dziuba/nski, A remark on a Marcinkiewicz-Hörmander multiplier theorem for some non-differential convolution operators, Colloq. Math. 58 (1989), 77-83.
  6. G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982.
  7. P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non-graded homogeneous groups, Invent. Math. 83 (1986), 557-582.
  8. P. Głowacki, The inversion problem for singular integral operators on homogeneous groups, Studia Math. 87 (1987), 53-69.
  9. P. Głowacki, The Rockland condition for nondifferential convolution operators, Duke Math. J. 58 (1989), 371-395.
  10. P. Głowacki, The Rockland condition for nondifferential convolution operators II, Studia Math. 98 (1991), 99-114.
  11. B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe gradué, Comm. Partial Differential Equations 3 (1978), 889-958.
  12. A. Hulanicki and J. W. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, Studia Math. 80 (1984), 235-244.
  13. A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspekhi Mat. Nauk 17 (4) (1962), 57-110 (in Russian).
  14. J. Nourrigat, Inégalités L2 et représentations de groupes nilpotents, J. Funct. Anal. 74 (1987), 300-327.
  15. J. Nourrigat, L2 inequalities and representations of nilpotent groups, C.I.M.P.A. School of Harmonic Analysis, Wuhan, to appear.
Pages:
63-71
Main language of publication
English
Received
1997-09-26
Published
1998
Exact and natural sciences