ArticleOriginal scientific text
Title
On operators satisfying the Rockland condition
Authors 1, 2
Affiliations
- Institute of Mathematics, Wrocław University, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland
Abstract
Let G be a homogeneous Lie group. We prove that for every closed, homogeneous subset Γ of G* which is invariant under the coadjoint action, there exists a regular kernel P such that P goes to 0 in any representation from Γ and P satisfies the Rockland condition outside Γ. We prove a subelliptic estimate as an application.
Bibliography
- I. D. Brown, Dual topology of a nilpotent Lie group, Ann. Sci. École Norm. Sup. 6 (1973), 407-411.
- M. Christ, D. Geller, P. Głowacki and L. Pollin, Pseudodifferential operators on groups with dilations, Duke Math. J. 68 (1992), 31-65.
- R. Coifman et G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
- R. Coifman et G. Weiss, Transference Methods in Analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., Providence, 1977.
- J. Dziuba/nski, A remark on a Marcinkiewicz-Hörmander multiplier theorem for some non-differential convolution operators, Colloq. Math. 58 (1989), 77-83.
- G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982.
- P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non-graded homogeneous groups, Invent. Math. 83 (1986), 557-582.
- P. Głowacki, The inversion problem for singular integral operators on homogeneous groups, Studia Math. 87 (1987), 53-69.
- P. Głowacki, The Rockland condition for nondifferential convolution operators, Duke Math. J. 58 (1989), 371-395.
- P. Głowacki, The Rockland condition for nondifferential convolution operators II, Studia Math. 98 (1991), 99-114.
- B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe gradué, Comm. Partial Differential Equations 3 (1978), 889-958.
- A. Hulanicki and J. W. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, Studia Math. 80 (1984), 235-244.
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspekhi Mat. Nauk 17 (4) (1962), 57-110 (in Russian).
- J. Nourrigat, Inégalités
et représentations de groupes nilpotents, J. Funct. Anal. 74 (1987), 300-327. - J. Nourrigat,
inequalities and representations of nilpotent groups, C.I.M.P.A. School of Harmonic Analysis, Wuhan, to appear.