ArticleOriginal scientific text

Title

Metric unconditionality and Fourier analysis

Authors 1

Affiliations

  1. Équipe d'Analyse, Université Paris VI, Boîte 186, 4, place Jussieu, F-75252 Paris Cedex 05, France

Abstract

We investigate several aspects of almost 1-unconditionality. We characterize the metric unconditional approximation property (umap) in terms of "block unconditionality". Then we focus on translation invariant subspaces Lp_{E}() and CE() of functions on the circle and express block unconditionality as arithmetical conditions on E. Our work shows that the spaces pE(), p an even integer, have a singular behaviour from the almost isometric point of view: property (umap) does not interpolate between Lp_{E}() and Lp+2_{E}(). These arithmetical conditions are used to construct counterexamples for several natural questions and to investigate the maximal density of such sets E. We also prove that if E={nk}k1 with |nk+1nk|, then CE() has umap and we get a sharp estimate of the Sidon constant of Hadamard sets. Finally, we touch on the relationship of metric unconditionality and probability theory.

Bibliography

  1. I. Berkes, On almost i.i.d. subsequences of the trigonometric system, in: Functional Analysis (Austin, 1986-87), E. W. Odell and H. P. Rosenthal (eds.), Lecture Notes in Math. 1332, Springer, 1988, 54-63.
  2. I. Berkes, Probability theory of the trigonometric system, in: Limit Theorems in Probability and Statistics (Pécs, 1989), I. Berkes, E. Csáki and P. Révész (eds.), Colloq. Math. Soc. János Bolyai 57, North-Holland, 1990, 35-58.
  3. J. P. M. Binet, Note sur une question relative à la théorie des nombres, C. R. Acad. Sci. Paris 12 (1841), 248-250.
  4. E. Bishop, A general Rudin-Carleson theorem, Proc. Amer. Math. Soc. 13 (1962), 140-143.
  5. J. Bourgain and H. P. Rosenthal, Geometrical implications of certain finite dimensional decompositions, Bull. Soc. Math. Belg. Sér. B 32 (1980), 57-82.
  6. V. Brouncker, Letter to John Wallis, in: Œuvres de Fermat 3, Gauthier-Villars, 1896, 419-420.
  7. P. G. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, in: Geometry of Banach Spaces (Strobl, 1989), P. F. X. Müller and W. Schachermayer (eds.), London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1991, 49-63.
  8. R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs Surveys 64, Longman, 1993.
  9. Diophantus of Alexandria, Les six livres arithmétiques et le livre des nombres polygones, Blanchard, 1959.
  10. R. L. Ekl, Equal sums of four seventh powers, Math. Comp. 65 (1996), 1755-1756.
  11. L. Euler, Solutio generalis quorundam problematum Diophanteorum, quae vulgo nonnisi solutiones speciales admittere videntur, in: Opera Omnia (I) II, Teubner, 1915, 428-458.
  12. L. Euler, Observationes circa bina biquadrata, quorum summam in duo alia biquadrata resolvere liceat, in: Opera Omnia (I) III, Teubner, 1917, 211-217.
  13. L. Euler, Specimen algorithmi singularis, in: Opera Omnia (I) XV, Teubner, 1927, 31-49.
  14. M. Feder, On subspaces of spaces with an unconditional basis and spaces of operators, Illinois J. Math. 24 (1980), 196-205.
  15. F. Forelli, The isometries of Hp, Canad. J. Math. 16 (1964), 721-728.
  16. J. J. F. Fournier, Two UC-sets whose union is not a UC-set, Proc. Amer. Math. Soc. 84 (1982), 69-72.
  17. G. Godefroy and N. J. Kalton, Approximating sequences and bidual projections, Quart. J. Math. Oxford (2) 48 (1997), 179-202.
  18. G. Godefroy, N. J. Kalton and D. Li, On subspaces of L1 which embed into 1, J. Reine Angew. Math. 471 (1996), 43-75.
  19. G. Godefroy, N. J. Kalton and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59.
  20. G. Godefroy and P. D. Saphar, Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math. 32 (1988), 672-695.
  21. H. Halberstam and K. F. Roth, Sequences, 2nd ed., Springer, 1983.
  22. S. Hartman, Some problems and remarks on relative multipliers, Colloq. Math. 54 (1987), 103-111.
  23. N. Hindman, On density, translates, and pairwise sums of integers, J. Combin. Theory Ser. A 33 (1982), 147-157.
  24. B. Host, J.-F. Méla et F. Parreau, Analyse harmonique des mesures, Astérisque 135-136 (1986).
  25. W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506.
  26. J.-P. Kahane, Sur les fonctions moyenne-périodiques bornées, Ann. Inst. Fourier (Grenoble) 7 (1957), 293-314.
  27. N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278.
  28. N. J. Kalton and D. Werner, Property(M), M-ideals, and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137-178.
  29. A. L. Koldobsky, Isometries of Lp(X;Lq) and equimeasurability, Indiana Univ. Math. J. 40 (1991), 677-705.
  30. D. Li, On Hilbert sets and CΛ(G)-spaces with no subspace isomorphic to c0, Colloq. Math. 68 (1995), 67-77; addendum, ibid., p. 79.
  31. D. Li, Complex Unconditional Metric Approximation Property for CΛ() spaces, Studia Math. 121 (1996), 231-247.
  32. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977.
  33. J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series, J. London Math. Soc. 6 (1931), 230-233.
  34. J. M. López and K. A. Ross, Sidon Sets, Marcel Dekker, 1975.
  35. F. Lust-Piquard, Ensembles de Rosenthal et ensembles de Riesz, C. R. Acad. Sci. Paris Sér. A 282 (1976), 833-835.
  36. B. Maurey, Isomorphismes entre espaces H1, Acta Math. 145 (1980), 79-120.
  37. Y. Meyer, Endomorphismes des idéaux fermés de L1(G), classes de Hardy et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup. (4) 1 (1968), 499-580.
  38. Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland, 1972.
  39. I. M. Miheev [I. M. Mikheev], On lacunary series, Math. USSR-Sb. 27 (1975), 481-502.
  40. A. Moessner, Einige numerische Identitäten, Proc. Indian Acad. Sci. Sect. A 10 (1939), 296-306.
  41. L. J. Mordell, Diophantine Equations, Academic Press, 1969.
  42. T. Murai, On lacunary series, Nagoya Math. J. 85 (1982), 87-154.
  43. A. Pełczyński, On simultaneous extension of continuous functions. A generalization of theorems of Rudin-Carleson and Bishop, Studia Math. 24 (1964), 285-304; supplement, ibid. 25 (1965), 157-161.
  44. A. Pełczyński and P. Wojtaszczyk, Banach spaces with finite-dimensional expansions of identity and universal bases of finite-dimensional subspaces, ibid. 40 (1971), 91-108.
  45. G. Pisier, De nouvelles caractérisations des ensembles de Sidon, in: Mathematical Analysis and Applications, Part B, Adv. in Math. Suppl. Stud. 7B, Academic Press, 1981, 685-726.
  46. G. Pisier, Conditions d'entropie et caractérisations arithmétiques des ensembles de Sidon, in: Topics in Modern Harmonic Analysis II (Torino/Milano, 1982), L. De Michele and F. Ricci (eds.), Ist. Naz. Alta Mat. Francesco Severi, 1983, 911-944.
  47. A. I. Plotkin, Continuation of Lp-isometries, J. Soviet Math. 2 (1974), 143-165.
  48. S. Ramanujan, Notebooks, Tata Inst. Fundam. Research, 1957.
  49. S. K. Rao, On sums of sixth powers, J. London Math. Soc. 9 (1934), 172-173.
  50. M. Rosenblatt, A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 43-47.
  51. H. P. Rosenthal, Sous-espaces de L1. Cours de troisième cycle, Université Paris 6, 1979 (unpublished).
  52. W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-228.
  53. W. Rudin, Lp-isometries and equimeasurability, Indiana Univ. Math. J. 25 (1976), 215-228.
  54. I. Z. Ruzsa, On difference sets, Studia Sci. Math. Hungar. 13 (1978), 319-326.
  55. I. Singer, Bases in Banach Spaces II, Springer, 1981.
  56. C. M. Skinner and T. D. Wooley, On equal sums of two powers, J. Reine Angew. Math. 462 (1995), 57-68.
  57. C. L. Stewart and R. Tijdeman, On infinite-difference sets, Canad. J. Math. 31 (1979), 897-910.
Pages:
19-62
Main language of publication
English
Received
1997-04-04
Accepted
1998-02-12
Published
1998
Exact and natural sciences