ArticleOriginal scientific text
Title
A density theorem for algebra representations on the space (s)
Authors 1
Affiliations
- Institute of Mathematics Polish Academy of Sciences, P.O. Box 137, Śniadeckich 8, 00-950 Warszawa, Poland
Abstract
We show that an arbitrary irreducible representation T of a real or complex algebra on the F-space (s), or, more generally, on an arbitrary infinite (topological) product of the field of scalars, is totally irreducible, provided its commutant is trivial. This provides an affirmative solution to a problem of Fell and Doran for representations on these spaces.
Bibliography
- S. Banach, Théorie des Opérations Linéaires, Warszawa, 1932.
- F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973.
- J. M. G. Fell and R. S. Doran, Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles, Vol. I, Academic Press, 1988.
- N. Jacobson, Lectures in Abstract Algebra, Vol. II, van Nostrand, 1953.
- G. Köthe, Topological Vector Spaces I, Springer, 1969.
- S. Rolewicz, Metric Linear Spaces, PWN and Reidel, 1984.
- H. H. Schaefer, Topological Vector Spaces, Springer, 1971.
- W. Żelazko, A density theorem for F-spaces, Studia Math. 96 (1990), 159-166.
- W. Żelazko, On a problem of Fell and Doran, Colloq. Math. 62 (1991), 31-37.