ArticleOriginal scientific text

Title

Averages of holomorphic mappings and holomorphic retractions on convex hyperbolic domains

Authors 1, 2

Affiliations

  1. Department of Mathematics, The Technion-Israel Institute of Technology, 32000 Haifa, Israel
  2. Department of Applied Mathematics, International College of Technology, P.O. Box 78, 20101 Karmiel, Israel

Abstract

Let D be a hyperbolic convex domain in a complex Banach space. Let the mapping F ∈ Hol(D,D) be bounded on each subset strictly inside D, and have a nonempty fixed point set ℱ in D. We consider several methods for constructing retractions onto ℱ under local assumptions of ergodic type. Furthermore, we study the asymptotic behavior of the Cesàro averages of one-parameter semigroups generated by holomorphic mappings.

Bibliography

  1. M. Abate and J.-P. Vigué, Common fixed points in hyperbolic Riemann surfaces and convex domains, Proc. Amer. Math. Soc. 112 (1991), 503-512.
  2. M. Abd-Alla, L'ensemble des points fixes d'une application holomorphe dans un produit fini de boules-unités d'espaces de Hilbert et une sous-variété banachique complexe, Ann. Mat. Pura Appl. (4) 153 (1988), 63-75.
  3. T. Y. Azizov, V. Khatskevich, and D. Shoikhet, On the number of fixed points of a holomorphism, Sibirsk. Mat. Zh. 31 (1990), no. 6, 192-195 (in Russian).
  4. H. Cartan, Sur les rétractions d'une variété, C. R. Acad. Sci. Paris 303 (1986), 715-716.
  5. G.-N. Chen, Iteration for holomorphic maps of the open unit ball and the generalized upper half-plane of n, J. Math. Anal. Appl. 98 (1984), 305-313.
  6. Do Duc Thai, The fixed points of holomorphic maps on a convex domain, Ann. Polon. Math. 56 (1992), 143-148.
  7. C. J. Earle and R. S. Hamilton, A fixed-point theorem for holomorphic mappings, in: Proc. Sympos. Pure Math. 16, Amer. Math. Soc., Providence, R.I., 1970, 61-65.
  8. G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer, Berlin, 1976.
  9. T. Franzoni and E. Vesentini, Holomorphic Maps and Invariant Distances, North-Holland, Amsterdam, 1980.
  10. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
  11. I. Gohberg and A. Markus, Characteristic properties of a pole of the resolvent of a linear closed operator, Uchenye Zapiski Bel'tskogo Gosped. 5 (1960), 71-76 (in Russian).
  12. L. F. Heath and T. J. Suffridge, Holomorphic retracts in complex n-space, Illinois J. Math. 25 (1981), 125-135.
  13. M. Hervé, Analyticity in Infinite Dimensional Spaces, de Gruyter, Berlin, 1989.
  14. J. M. Isidro and L. L. Stacho, z Holomorphic Automorphism Groups in Banach Spaces: An Elementary Introduction, North-Holland, Amsterdam, 1984.
  15. V. Khatskevich, S. Reich, and D. Shoikhet, Ergodic type theorems for nonlinear semigroups with holomorphic generators, in: Recent Developments in Evolution Equations, Pitman Res. Notes Math. 324, Longman, 1995, 191-200.
  16. V. Khatskevich, S. Reich, and D. Shoikhet, Asymptotic behavior of solutions to evolution equations and the construction of holomorphic retractions, Math. Nachr. 189 (1998), 171-178.
  17. V. Khatskevich and D. Shoikhet, Fixed points of analytic operators in a Banach space and applications, Sibirsk. Mat. Zh. 25 (1984), no. 1, 189-200 (in Russian).
  18. V. Khatskevich and D. Shoikhet, Differentiable Operators and Nonlinear Equations, Birkhäuser, Basel, 1994.
  19. J. J. Koliha, Some convergence theorems in Banach algebras, Pacific J. Math. 52, (1974), 467-473.
  20. M. A. Krasnosel'skiĭ and P. P. Zabreĭko, Geometrical Methods of Nonlinear Analysis, Springer, Berlin, 1984.
  21. Y. Kubota, Iteration of holomorphic maps of the unit ball into itself, Proc. Amer. Math. Soc. 88 (1983) 476-480.
  22. T. Kuczumow and A. Stachura, Iterates of holomorphic and KD-nonexpansive mappings in convex domains in n, Adv. Math. 81 (1990), 90-98.
  23. K. B. Laursen and M. Mbekhta, Operators with finite chain length and the ergodic theorem, Proc. Amer. Math. Soc. 123 (1995), 3443-3448.
  24. L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261.
  25. Yu. Lyubich and J. Zemánek, Precompactness in the uniform ergodic theory, Studia Math. 112 (1994), 89-97.
  26. B. D. MacCluer, Iterates of holomorphic self-maps of the unit ball in CN, Michigan Math. J. 30 (1983), 97-106.
  27. P. Mazet, Les points fixes d'une application holomorphe d'un domaine borné dans lui-même admettent une base de voisinages convexes stable, C. R. Acad. Sci. Paris 314 (1992), 197-199.
  28. P. Mazet et J.-P. Vigué, Points fixes d'une application holomorphe d'un domaine borné dans lui-même, Acta Math. 166 (1991), 1-26.
  29. P. Mazet et J.-P. Vigué, Convexité de la distance de Carathéodory et points fixes d'applications holomorphes, Bull. Sci. Math. 116 (1992), 285-305.
  30. P. R. Mercer, Complex geodesics and iterates of holomorphic maps on convex domains in n, Trans. Amer. Math. Soc. 338 (1993), 201-211.
  31. S. Reich and D. Shoikhet, Metric domains, holomorphic mappings and nonlinear semigroups, Technion Preprint Series No. MT-1018, 1997.
  32. W. Rudin, The fixed-point set of some holomorphic maps, Bull. Malaysian Math. Soc. 1 (1978), 25-28.
  33. W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
  34. D. Shoikhet, Some properties of Fredholm mappings in Banach analytic manifolds, Integral Equations Operator Theory 16 (1993), 430-451.
  35. T. J. Suffridge, Common fixed points of commuting holomorphic maps of the hyperball, Michigan Math. J. 21 (1974), 309-314.
  36. A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New York, 1980.
  37. E. Vesentini, Complex geodesics and holomorphic maps, Sympos. Math. 26 (1982), 211-230.
  38. E. Vesentini, Su un teorema di Wolff e Denjoy, Rend. Sem. Mat. Fis. Milano 53 (1983), 17-25.
  39. E. Vesentini, Iterates of holomorphic mappings, Uspekhi Mat. Nauk 40 (1985), no. 4, 13-16 (in Russian).
  40. J.-P. Vigué, Points fixes d'applications holomorphes dans un produit fini de boules-unités d'espaces de Hilbert, Ann. Mat. Pura Appl. 137 (1984), 245-256.
  41. J.-P. Vigué, Points fixes d'applications holomorphes dans un domaine borné convexe de n, Trans. Amer. Math. Soc. 289 (1985), 345-353.
  42. J.-P. Vigué, Sur les points fixes d'applications holomorphes, C. R. Acad. Sci. Paris 303 (1986), 927-930.
  43. J.-P. Vigué, Fixed points of holomorphic mappings in a bounded convex domain in n, in: Proc. Sympos. Pure Math.
Pages:
231-244
Main language of publication
English
Received
1997-08-20
Accepted
1998-02-20
Published
1998
Exact and natural sciences