ArticleOriginal scientific text

Title

On the growth of averaged Weyl sums for rigid rotations

Authors 1, 2

Affiliations

  1. UFR de Mathématiques et URA GAT, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
  2. Department of Mathematics, Princeton University, Princeton, New Jersey 08544, U.S.A.

Abstract

Let ω ∈ ℝ╲ℚ and fL2(^1) of zero average. We study the asymptotic behaviour of the Weyl sums S(m,ω)f(x)=m-1_{k=0}f(x+kω) and their averages Ŝ(m,ω)f(x)={1m}m_{j=1}S(j,ω)f(x), in the L2-norm. In particular, for a suitable class of Liouville rotation numbers ω ∈ ℝ╲ℚ, we are able to construct examples of functions fHs^{1}, s > 0, such that, for all ε > 0, ||Ŝ(m,ω)f||_2 ≥ C_{ε}m^{1/(1+s)-ε}asm.Weshowadditiont,^forallf ∈ H^{s}^{1},lim inf m^{-1/(1+s)} (log m)^{-1/2} ||Ŝ(m,ω)f||_2 < ∞!$! for all ω ∈ ℝ╲ℚ.

Bibliography

  1. [AG] S. Aubry and C. Godrèche, Incommensurate structure with no average lattice an example of one-dimensional quasicrystal, J. Physique 47 (1986), no. 7, 187-196.
  2. [B] M. Berry, Incommensurability in an exactly soluble quantal and classical model for a kicked rotator, Phys. D 10 (1984), 369-378.
  3. [Be] J. Bellissard, Stability and instability in quantum mechanics, in: Trends and Developments in the 80's (Bielefeld, 1982//1983), S. Albeverio and P. Blanchard (eds.), World Sci., 1985, 1-106.
  4. [CMPS] D. Crisp, W. Moran, A. Pollington and P. Shiue, Substitution invariant cutting sequences, J. Théor. Nombres Bordeaux 5 (1993), 123-137.
  5. [DBF] S. De Bièvre and G. Forni, Transport properties of kicked and quasi-periodic Hamiltonians, J. Statist. Phys. (1998), to appear.
  6. [D] J. M. Dumont, Summation formulae for substitutions on a finite alphabet, in: Number Theory and Physics, J. M. Luck, P. Moursa and M. Waldschmidt (eds.), Lecture Notes in Phys. 47, Springer, 1990, 185-194.
  7. [G] G. Gallavotti, Elements of Classical Mechanics, Texts Monographs Phys., Springer, 1983.
  8. [GLV] C. Godrèche, J. M. Luck and F. Vallet, Quasiperiodicity and types of order a study in one dimension, J. Phys. A 20 (1987), 4483-4499.
  9. [K] A. Khinchin, Continued Fractions, The Univ. of Chicago Press, Chicago and London, 1964.
  10. [Ke] H. Kesten, On a conjecture by Erdős and Szüsz related to uniform distribution modulo 1, Acta Arith. 12 (1966), 193-212.
  11. [KN] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.
  12. [L] P. Liardet, Regularities of distribution, Compositio Math. 61 (1987), 267-293.
  13. [LV] P. Liardet and D. Volný, Sums of continuous and differentiable functions in dynamical systems, Israel J. Math. 98 (1997), 29-60.
  14. [Pa] D. A. Pask, Skew products over the irrational rotation, ibid. 69 (1990), 65-74.
  15. [P1] K. Petersen, Ergodic Theory, Cambridge Univ. Press, Cambridge, 1983.
  16. [P2] K. Petersen, On a series of cosecants related to a problem in ergodic theory, Compositio Math. 26 (1973), 313-317.
Pages:
199-212
Main language of publication
English
Received
1996-09-05
Accepted
1998-01-12
Published
1998
Exact and natural sciences