ArticleOriginal scientific text
Title
A generalized Kahane-Khinchin inequality
Authors 1
Affiliations
- Department of Mathematics, Kharkov State University, Swobodi sq. 4, Kharkov, 310077, Ukraine
Abstract
The inequality
with an absolute constant C, and similar ones, are extended to the case of belonging to an arbitrary normed space X and an arbitrary compact group of unitary operators on X instead of the operators of multiplication by .
Bibliography
- S. Yu. Favorov, The distribution of values of holomorphic mappings of
into Banach space, Funktsional. Anal. i Prilozhen. 21 (1987), no. 3, 91-92 (in Russian); English transl.: Functional Anal. Appl. 21 (1987), 251-252. - S. Yu. Favorov, Growth and distribution of values of holomorphic mappings of a finite-dimensional space into a Banach space, Sibirsk. Mat. Zh. 31 (1990), no. 1, 161-171 (in Russian); English transl.: Siberian Math. J. 31 (1990), 137-146.
- S. Yu. Favorov, Estimates for asymptotic measures and Jessen functions for almost periodic functions, Dopov. Nats. Akad. Ukraïni 1996 (10), 27-30 (in Russian).
- Ye. A. Gorin and S. Yu. Favorov, Generalizations of Khinchin's inequality, Teor. Veroyatnost. i Primenen. 35 (1990), 763-767 (in Russian); English transl.: Theory Probab. Appl. 35 (1990), 766-771.
- Ye. A. Gorin and S. Yu. Favorov, Variants of the Khinchin inequality, in: Studies in the Theory of Functions of Several Real Variables, Yaroslavl', 1990, 52-63 (in Russian).
- J. P. Kahane, Some Random Series of Functions, Cambridge Univ. Press, New York, 1985.
- R. Latała, On the equivalence between geometric and arithmetic means for log-con-cave measures, in: Proceedings of Convex Geometry Seminar, MSRI, Berkeley, 1996, to appear.
- V.D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Math. 1200, Springer, 1986.
- D.C. Ullrich, Khinchine's inequality and the zeros of Bloch functions, Duke Math. J. 57 (1988), 519-535.
- D.C. Ullrich, An extension of the Kahane-Khinchine inequality in a Banach space, Israel J. Math. 62 (1988), 56-62.