ArticleOriginal scientific text
Title
Hull-minimal ideals in the Schwartz algebra of the Heisenberg group
Authors 1
Affiliations
- Université de Metz, Département de Mathématiques, Ile du Saulcy, 57045 Metz Cedex 01, France
Abstract
For every closed subset C in the dual space of the Heisenberg group we describe via the Fourier transform the elements of the hull-minimal ideal j(C) of the Schwartz algebra and we show that in general for two closed subsets of the product of and is different from .
Bibliography
- [BD] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973.
- [CG] L. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications Cambridge Univ. Press, 1990.
- [Di1] J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, 1969.
- [Di2] J. Dixmier, Opérateurs de rang fini dans les représentations unitaires, Inst. Hautes Etudes Sci. Publ. Math. 6 (1960), 305-317.
- [FO] G. Folland, Harmonic Analysis in Phase Space, Princeton Univ. Press, 1989.
- [FS] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton Univ. Press, 1982.
- [Hu] A. Hulanicki, A functional calculus for Rockland oerators on nilpotent Lie groups, Studia Math. 78 (1984), 253-266.
- [Lu1] J. Ludwig, Polynomial growth and ideals in group algebras, Manuscripta Math. 30 (1980), 215-221.
- [Lu2] J. Ludwig, Minimal C*-dense ideals and algebraically irreducible representations of the Schwartz-algebra of a nilpotent Lie group, in: Harmonic Analysis, Springer, 1987, 209-217.
- [Lu3] J. Ludwig, Topologically irreducible of the Schwartz-algebra a nilpotent Lie group, Arch. Math. (Basel) 54 (1990), 284-292.
- [LM] J. Ludwig et C. Molitor-Braun, L'algèbre de Schwartz d'un groupe de Lie nilpotent, Travaux de Mathématiques Publications du C.U. Luxembourg, 1996.
- [LRS] J. Ludwig, G. Rosenbaum and J. Samuel, The elements of bounded trace in the C*-algebra of a nilpotent Lie group, Invent. Math. 83 (1986), 167-190.
- [LZ] J. Ludwig and H. Zahir, On the nilpotent Fourier transform, Lett. math. Phys. 30, (1994), 23-34.
- [Rei] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford Math. Monographs, Oxford Univ. Press, 1968.