ArticleOriginal scientific textTwo-parameter maximal functions associated with homogeneous surfaces in
Title
Two-parameter maximal functions associated with homogeneous surfaces in
Authors 1, 1
Affiliations
- Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Abstract
Given a hypersurface in , where Ꮁ is homogeneous of degree d>0, we define the two-parameter maximal operator
|f(x - (as, bᎱ(s)))|ds L^p x_n = 0!$! only at the origin.
Bibliography
- [B] J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Anal. Math. 47 (1968), 69-85.
- [CRW] A. Carbery, F. Riccci, and J. Wright, Rev. Mat. Iberoamericana, to appear.
- [C] Y.-K. Cho, Multiparameter maximal operators and square functions on product spaces, Indiana Univ. Math. J.43 (1994), 459-491.
- [CDMM] M. Cowling, S. Disney, G. Mauceri, and D. Müller, Damping oscillatory integrals, Invent. Math. 101 (1990), 237-260.
- [dG] M. de Guzmán, Differentiation of Integrals in
, Lecture Notes in Math. 481, Springer, 1975. - [I] A. Iosevich, Maximal operators associated to families of flat curves in the plane, Duke Math. J. 76 (1995), 631-644.
- [IS] A. Iosevich and E. Sawyer, Maximal averages over mixed homogenous surfaces, preprint.
- [M] G. Marletta, Maximal functions with mitigating factors in the plane, J. London Math. Soc., to appear.
- [MRZ] G. Marletta, F. Ricci, and J. Zienkiewicz, Two-parameter maximal functions associated with degenerate homogeneous surfaces in
, this issue, 67-75. - [MSS] G. Mockenhaupt, A. Seeger, and C. Sogge, Wave front sets, local smoothing, and Bourgain's circular maximal theorem, Ann. of Math. 136 (1992), 207-218.
- [RS] F. Ricci and E. M. Stein, Multiparameter singular integrals and maximal functions, Ann. Inst. Fourier (Grenoble) 42 (1992), 637-670.
- [RdF] J. L. Rubio de Francia, Maximal functions and Fourier transforms, Duke Math. J. 53 (1986), 395-404.
- [S] E. M. Stein, Maximal functions: spherical means, Proc. Nat. Acad. Sci. 73 (1976), 2174-2175.
- [SW] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.