ArticleOriginal scientific text

Title

The symmetric tensor product of a direct sum of locally convex spaces

Authors 1, 2, 3

Affiliations

  1. Departamento de Análisis Matemático, Universidad Complutense, 28040 Madrid, Spain.
  2. Fachbereich Mathematik, Universität Oldenburg, 26111 Oldenburg, Germany
  3. IMECC-Unicamp, C.P. 6065, 13081-970 Campinas, Brasil

Abstract

An explicit representation of the n-fold symmetric tensor product (equipped with a natural topology τ such as the projective, injective or inductive one) of the finite direct sum of locally convex spaces is presented. The formula for n_{τ,s}(F1F2) gives a direct proof of a recent result of Díaz and Dineen (and generalizes it to other topologies τ) that the n-fold projective symmetric and the n-fold projective "full" tensor product of a locally convex space E are isomorphic if E is isomorphic to its square E2.

Keywords

symmetric tensor products, continuous n-homogeneous polynomials, tensor topologies

Bibliography

  1. R. Alencar and K. Floret, Weak-strong continuity of multilinear mappings and the Pełczyński-Pitt theorem, J. Math. Anal. Appl. 206 (1997), 532-546.
  2. A. Arias and J. Farmer, On the structure of tensor products of p-spaces, Pacific J. Math. 175 (1996), 13-37.
  3. F. Blasco, Complementación, casinormabilidad y tonelación en espacios de polinomios, doct. thesis, Univ. Compl. Madrid, 1996.
  4. F. Blasco, Complementation in spaces of symmetric tensor products and polynomials, Studia Math. 123 (1997) 165-173.
  5. J. Bonet and A. Peris, On the injective tensor product of quasinormable spaces, Results in Math. 20 (1991), 431-443.
  6. A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud. 176, North-Holland, 1993.
  7. A. Defant and M. Maestre, Property (BB) and holomorphic functions on Fréchet-Montel spaces, Math. Proc. Cambridge Philos. Soc. 115 (1993), 305-313.
  8. J. C. Díaz and S. Dineen, Polynomials on stable spaces, Ark. Mat., to appear.
  9. S. Dineen, Complex Analysis on Infinite Dimensional Spaces, in preparation.
  10. K. Floret, Some aspects of the theory of locally convex inductive limits, in: Functional Analysis: Surveys and Recent Results II, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland, 1980, 205-237.
  11. K. Floret, Tensor topologies and equicontinuity, Note Mat. 5 (1985), 37-49.
  12. W. T. Gowers, A solution to the Schroeder-Bernstein problem for Banach spaces, Bull. London Math. Soc. 28 (1996), 297-304.
  13. W. Greub, Multilinear Algebra, Universitext, Springer, 1978.
  14. A. Grothendieck, Produits tensoriels et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
  15. H. Jarchow, Locally Convex Spaces, Teubner, 1981.
  16. R. Ryan, Application of topological tensor products to infinite dimensional holomorphy, doct. thesis, Trinity Coll. Dublin, 1980.
  17. L. Schwartz, Théorie des distributions à valeurs vectorielles. I et II, Ann. Inst. Fourier (Grenoble) 7 (1957), 1-141, and 8 (1958), 1-209.
Pages:
285-295
Main language of publication
English
Received
1997-07-02
Accepted
1997-11-12
Published
1998
Exact and natural sciences